Skip to main content
Log in

Convergence in Higher Mean of a Random Schrödinger to a Linear Boltzmann Evolution

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We study the macroscopic scaling and weak coupling limit for a random Schrödinger equation on \(\mathbb{Z}^3\). We prove that the Wigner transforms of a large class of “macroscopic” solutions converge in r th mean to solutions of a linear Boltzmann equation, for any 1 ≤  r  <  ∞. This extends previous results where convergence in expectation was established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aizenman M., Molchanov S. (1993). Localization at large disorder and at extreme energies: an elementary derivation. Commun. Math. Phys. 157:245–278

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Chen T. (2005). Localization Lengths and Boltzmann Limit for the Anderson Model at Small Disorders in Dimension 3. J. Stat. Phys. 120(1–2):279–337

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Erdös L. (2002). Linear Boltzmann equation as the scaling limit of the Schrödinger evolution coupled to a phonon bath. J. Stat. Phys. 107(5):1043–1127

    Article  MATH  Google Scholar 

  4. Erdös L., Yau H.-T. (2000). Linear Boltzmann equation as the weak coupling limit of a random Schrödinger equation. Comm. Pure Appl. Math. LIII:667–753

    Article  Google Scholar 

  5. Erdös, L., Salmhofer, M., Yau, H.-T.: Quantum diffusion of random Schrödinger evolution in the scaling limit. http://arxiv.org/abs/math-ph/0502025, 2005

  6. Fröhlich J., Spencer T. (1983). Absence of diffusion in the Anderson tight binding model for large disorder or low energy. Commun. Math. Phys. 88:151–184

    Article  ADS  MATH  Google Scholar 

  7. Lukkarinen, J., Spohn, H.: Kinetic Limit for Wave Propagation in a Random Medium. http://arxiv.org/abs/math-ph/0505075, 2005

  8. Schlag W., Shubin C., Wolff T. (2002). Frequency concentration and localization lengths for the Anderson model at small disorders. J. Anal. Math. 88:173

    Article  MathSciNet  MATH  Google Scholar 

  9. Spohn H. (1977). Derivation of the transport equation for electrons moving through random impurities. J. Stat. Phys. 17(6):385–412

    Article  ADS  MathSciNet  Google Scholar 

  10. Stein E. (1993). Harmonic Analysis. Princeton University Press, Princeton, NJ

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Chen.

Additional information

Communicated by H.-T. Yau

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, T. Convergence in Higher Mean of a Random Schrödinger to a Linear Boltzmann Evolution. Commun. Math. Phys. 267, 355–392 (2006). https://doi.org/10.1007/s00220-006-0085-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-006-0085-2

Keywords

Navigation