Skip to main content
Log in

Multifractal Analysis for Lyapunov Exponents on Nonconformal Repellers

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

For nonconformal repellers satisfying a certain cone condition, we establish a version of multifractal analysis for the topological entropy of the level sets of the Lyapunov exponents. Due to the nonconformality, the Lyapunov exponents are averages of nonadditive sequences of potentials, and thus one cannot use Birkhoff’s ergodic theorem nor the classical thermodynamic formalism. We use instead a nonadditive topological pressure to characterize the topological entropy of each level set. This prevents us from estimating the complexity of the level sets using the classical Gibbs measures, which are often one of the main ingredients of multifractal analysis. Instead, we avoid even equilibrium measures, and thus in particular g-measures, by constructing explicitly ergodic measures, although not necessarily invariant, which play the corresponding role in our work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barreira L. (1996) A non-additive thermodynamic formalism and applications to dimension theory of hyperbolic dynamical systems. Ergodic Theory Dynam. Systems 16, 871–927

    MATH  MathSciNet  Google Scholar 

  2. Barreira L. (2002) Hyperbolicity and recurrence in dynamical systems: a survey of recent results. Resenhas IME-USP 5, 171–230

    MATH  MathSciNet  Google Scholar 

  3. Barreira L. (2003) Dimension estimates in nonconformal hyperbolic dynamics. Nonlinearity 16, 1657–1672

    Article  MATH  ADS  MathSciNet  Google Scholar 

  4. Barreira, L., Gelfert, K. Dimension estimates in dynamical systems: a survey. In preparation

  5. Barreira, L., Pesin, Ya. Lyapunov Exponents and Smooth Ergodic Theory. Univ. Lect. Ser. 23, Providence, RI: Amer. Math. Soc., 2002

  6. Barreira L., Pesin Ya., Schmeling J. (1997) On a general concept of multifractality: multifractal spectra for dimensions, entropies, and Lyapunov exponents. Multifractal rigidity. Chaos 7, 27–38

    Article  MATH  ADS  MathSciNet  Google Scholar 

  7. Barreira, L., Radu, L. Multifractal analysis of nonconformal repellers: a model case. Dyn. Syst. To appear.

  8. Bothe H. (1995) The Hausdorff dimension of certain solenoids. Ergodic Theory Dynam. Systems 15, 449–474

    Article  MATH  MathSciNet  Google Scholar 

  9. Bowen R. (1973) Topological entropy for noncompact sets. Trans. Amer. Math. Soc. 184, 125–136

    Article  MathSciNet  Google Scholar 

  10. Derriennic Y. (1983) Un théorème ergodique presque sous-additif. Ann. Probab. 11, 669–677

    Article  MATH  MathSciNet  Google Scholar 

  11. Falconer K. (1988) The Hausdorff dimension of self-affine fractals. Math. Proc. Cambridge Philos. Soc. 103, 339–350

    Article  MATH  MathSciNet  ADS  Google Scholar 

  12. Falconer K. (1994) Bounded distortion and dimension for non-conformal repellers. Math. Proc. Cambridge Philos. Soc. 115, 315–334

    MATH  MathSciNet  ADS  Google Scholar 

  13. Feng D., Lau K. (2002) The pressure function for products of non-negative matrices. Math. Res. Lett. 9, 363–378

    MATH  MathSciNet  Google Scholar 

  14. Hu H. (1998) Box dimensions and topological pressure for some expanding maps. Commun. Math. Phys. 191, 397–407

    Article  MATH  ADS  Google Scholar 

  15. Pesin Ya. (1997) Dimension Theory in Dynamical Systems: Contemporary Views and Applications. Chicago Lectures in Mathematics, Chicago University Press, Chicago

    Google Scholar 

  16. Rockafellar, R. Convex Analysis. Princeton Math. Ser. 28, Princeton, NJ: Princeton Univ. Press, 1970

  17. Ruelle D. (1982) Repellers for real analytic maps. Ergodic Theory Dynam. Systems 2, 99–107

    Article  MATH  MathSciNet  Google Scholar 

  18. Schmeling J. (2001) Entropy preservation under Markov coding. J. Stat. Phys. 104, 799–815

    Article  MATH  MathSciNet  Google Scholar 

  19. Simon K. (1997) The Hausdorff dimension of the Smale–Williams solenoid with different contraction coefficients. Proc. Amer. Math. Soc. 125, 1221–1228

    Article  MATH  ADS  MathSciNet  Google Scholar 

  20. Simon K., Solomyak B. (1999) Hausdorff dimension for horseshoes in \(\mathbb{R}^3\). Ergodic Theory Dynam. Systems 19, 1343–1363

    Article  MATH  MathSciNet  Google Scholar 

  21. Walters, P. An Introduction to Ergodic Theory. Graduate Texts in Mathematics 79, Berlin-Heidelberg-New York: Springer, 1981

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Barreira.

Additional information

Communicated by A. Kupiainen

Supported by the Center for Mathematical Analysis, Geometry, and Dynamical Systems, through FCT by Program POCTI/FEDER and the grant SFRH/BPD/12108/2003.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barreira, L., Gelfert, K. Multifractal Analysis for Lyapunov Exponents on Nonconformal Repellers. Commun. Math. Phys. 267, 393–418 (2006). https://doi.org/10.1007/s00220-006-0084-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-006-0084-3

Keywords

Navigation