Skip to main content
Log in

The 2D Euler Equations and the Statistical Transport Equations

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We prove the existence of weak solutions for the forward and backward statistical transport equations associated with the 2D Euler equations. Such solutions can be interpreted, respectively, as a statistical Lagrangian and a statistical Eulerian description of the motion of the fluid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Albeverio S., Hoegh-Krohn R., Merlini D. (1985). Some remarks on Euler flow, associated generalized random fields and Coulomb systems. In: Albeverio S. (eds) Infinite dimensional analysis and stochastic processes. Pitman, London, pp. 216–244

    Google Scholar 

  2. Albeverio S., Ribeiro de Faria M., Hoegh-Krohn R. (1979). Stationary measures for the periodic Euler flow in two dimensions. J. Stat. Phys. 20:585–595

    Article  ADS  MathSciNet  Google Scholar 

  3. Albeverio S., Cruzeiro A.B. (1990). Global flows with invariant (Gibbs) measures for Euler and Navier-Stokes two dimensional fluids. Commun. Math. Phys. 129:431–444

    Article  MATH  ADS  MathSciNet  Google Scholar 

  4. Boldrighini C., Frigio S. (1978). Equilibrium states for the two-dimensional incompressible Euler fluid. Atti Sem. Mat. Fis. Univ. Moderna XXVII:106–125

    MathSciNet  Google Scholar 

  5. Cipriano F. (1999). The two dimensional Euler equation: a statistical study. Commun. Math. Phys. 201:139–154

    Article  MATH  ADS  MathSciNet  Google Scholar 

  6. Chemetov N.V., Starovoitov V.N. (2002). On a motion of perfect fluid in a domain with sources and sinks. J. Math. Fluid Mech. 4:128–144

    Article  MATH  ADS  MathSciNet  Google Scholar 

  7. Cruzeiro A.B. (1983). Équations différentielles sur l’espace de Wiener et formules de Cameron- Martin non linéaires. J. Funct. Anal. 54:206–227

    Article  MATH  MathSciNet  Google Scholar 

  8. Caprino S., De Gregorio S. (1985). On the statistical solutions of the two-dimensional periodic Euler equations. Math. Methods Appl. Sci. 7:55–73

    Article  MATH  ADS  MathSciNet  Google Scholar 

  9. Delort J.M. (1991). Existence de nappes de tourbillon en dimension deux. J. Amer. Math. Soc. 4:553–586

    Article  MATH  MathSciNet  Google Scholar 

  10. DiPerna R.J., Lions P.L. (1989). Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math. 98:511–547

    Article  MATH  ADS  MathSciNet  Google Scholar 

  11. Diperna R.J., Majda A.J. (1987). Concentrations in regularizations for 2D incompressible flow. Commun. Pure Appl. Math. 40:301–345

    Article  MATH  MathSciNet  Google Scholar 

  12. Foias C., Manley O., Rosa R., Temam R. (2001). Navier-Stokes equations and turbulence. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  13. Gihman I.I., Skorohod A.V. (1974). The theory of stochastic processes. Springer Monographs in Mathematics. Springer Verlag, New York

    MATH  Google Scholar 

  14. Kato T. (1967). On classical solutions of the two-dimensional nonstationary Euler equations. Arch. Rat. Mech. Anal. 25(3):188–200

    Article  MATH  Google Scholar 

  15. Krasny, R.: Computing vortex sheet motion. In: Proceedings of Int. Congress of Math. Kyoto 1990, New York: Springer-Verlag, 2, 1991, pp. 1573–1583

  16. Malliavin P. (1982). Introduction au cours d’Analyse. Masson, Paris

    Google Scholar 

  17. Peters G. (1996). Anticipating flows on the Wiener space generated by vector fields of low regularity. J. Funct. Anal. 142:129–192

    Article  MATH  MathSciNet  Google Scholar 

  18. Ustunel A.S., Zakai M. (2000). Transformation of measure on the Wiener space. Springer Monographs in Mathematics, Springer Verlag, Berlin

    Google Scholar 

  19. Yudovic V. (1963). Non-stationary flow of an incompressible liquid. Zh. Vychysl. Mat. Mat. Fiz. 3:1032–1066

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Cipriano.

Additional information

Communicated by P. Constantin

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chemetov, N.V., Cipriano, F. The 2D Euler Equations and the Statistical Transport Equations. Commun. Math. Phys. 267, 543–558 (2006). https://doi.org/10.1007/s00220-006-0078-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-006-0078-1

Keywords

Navigation