Skip to main content
Log in

WKB Analysis for Nonlinear Schrödinger Equations with Potential

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We justify the WKB analysis for the semiclassical nonlinear Schrödinger equation with a subquadratic potential. This concerns subcritical, critical, and supercritical cases as far as the geometrical optics method is concerned. In the supercritical case, this extends a previous result by E. Grenier; we also have to restrict to nonlinearities which are defocusing and cubic at the origin, but besides subquadratic potentials, we consider initial phases which may be unbounded. For this, we construct solutions for some compressible Euler equations with unbounded source term and unbounded initial velocity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ablowitz, M.J., Clarkson, P.A.: Solitons, nonlinear evolution equations and inverse scattering. London Mathematical Society Lecture Note Series, Vol. 149, Cambridge, Cambridge University Press, 1991

  2. Alinhac S., Gérard P. (1991). Opérateurs pseudo-différentiels et théorème de Nash-Moser. InterEditions, Savoirs Actuels, Paris

    MATH  Google Scholar 

  3. Bahouri H., Chemin J.-Y. (1999). Équations d’ondes quasilinéaires et effet dispersif. Internat. Math. Res. Notices, no. 21, 1141–1178

    Article  MATH  MathSciNet  Google Scholar 

  4. Bahouri H., Chemin J.-Y. (1999). Équations d’ondes quasilinéaires et estimations de Strichartz. Amer. J. Math. 121(6): 1337–1377

    MATH  MathSciNet  Google Scholar 

  5. Bao W., Jin S., Markowich P.A. (2003). Numerical study of time-splitting spectral discretizations of nonlinear Schrödinger equations in the semiclassical regimes. SIAM J. Sci. Comput. 25(1):27–64

    Article  MATH  MathSciNet  Google Scholar 

  6. Burq N., Gérard P., Tzvetkov N. (2005). Multilinear eigenfunction estimates and global existence for the three dimensional nonlinear Schrödinger equations. Ann. Sci. École Norm. Sup. (4) 38(2):255–301

    MATH  Google Scholar 

  7. Burq N., Zworski M. (2005). Instability for the semiclassical non-linear Schrödinger equation. Commun. Math. Phys. 260(1):45–58

    Article  MATH  MathSciNet  ADS  Google Scholar 

  8. Carles, R.: Geometric optics and instability for semi-classical Schrödinger equations. Arch. Rat. Mech. Anal. (2006), to appear

  9. Carles R., Nakamura Y. (2004). Nonlinear Schrödinger equations with Stark potential. Hokkaido Math. J. 33(3):719–729

    MATH  MathSciNet  Google Scholar 

  10. Cazenave, T.: Semilinear Schrödinger equations. Courant Lecture Notes in Mathematics, Vol. 10, New York: New York University Courant Institute of Mathematical Sciences, 2003

  11. Chemin J.-Y. (1990). Dynamique des gaz à masse totale finie. Asymptotic Anal. 3(3):215–220

    MATH  MathSciNet  ADS  Google Scholar 

  12. Cheverry, C.: Cascade of phases in turbulent flows. Bull. Soc. Math. France (2006), to appear. Preprint version: http://arxiv.org/math.AP/0402408

  13. Cheverry, C., Guès, O.: Counter-examples to the concentration-cancellation property. Preprint, 2005

  14. Christ, M., Colliander, J., Tao, T.: Ill-posedness for nonlinear Schrödinger and wave equations. Ann. Inst. H. Poincaré Anal. Non Linéaire (2005), see also http://arxiv.org/math.AP/0311048, 2003

  15. Dalfovo F., Giorgini S., Pitaevskii L.P., Stringari S. (1999). Theory of Bose-Einstein condensation in trapped gases. Rev. Mod. Phys. 71(3):463–512

    Article  ADS  Google Scholar 

  16. Dereziński J., Gérard C. (1997). Scattering theory of quantum and classical N-particle systems. Texts and Monographs in Physics, Springer Verlag, Berlin Heidelberg

    MATH  Google Scholar 

  17. Duistermaat J.J. (1974). Oscillatory integrals, Lagrange immersions and unfolding of singularities. Comm. Pure Appl. Math. 27, 207–281

    MATH  MathSciNet  Google Scholar 

  18. Dunford, N., Schwartz, J.T.: Linear operators. Part II: Spectral theory. Self adjoint operators in Hilbert space. With the assistance of William G. Bade and Robert G. Bartle, New York-London: Interscience Publishers John Wiley & Sons, 1963

  19. Fujiwara D. (1979). A construction of the fundamental solution for the Schrödinger equation. J. Analyse Math. 35, 41–96

    Article  MATH  MathSciNet  Google Scholar 

  20. Fujiwara D. (1980). Remarks on the convergence of the Feynman path integrals. Duke Math. J. 47(3):559–600

    Article  MATH  MathSciNet  Google Scholar 

  21. Gérard, P.: Remarques sur l’analyse semi-classique de l’équation de Schrödinger non linéaire. Séminaire sur les Équations aux Dérivées Partielles, 1992–1993, Palaiseau, École Polytech., 1993, pp. Exp. No. XIII, 13

  22. Grenier E. (1998). Semiclassical limit of the nonlinear Schrödinger equation in small time. Proc. Amer. Math. Soc. 126(2):523–530

    Article  MATH  MathSciNet  Google Scholar 

  23. Jin S., Levermore C.D., McLaughlin D.W. (1999). The semiclassical limit of the defocusing NLS hierarchy. Comm. Pure Appl. Math. 52(5):613–654

    Article  MathSciNet  Google Scholar 

  24. Kamvissis, S., McLaughlin, K.D.T.-R., Miller, P.D.: Semiclassical soliton ensembles for the focusing nonlinear Schrödinger equation. Annals of Mathematics Studies, Vol. 154, Princeton, NJ: Princeton University Press, 2003

  25. Kolomeisky E.B., Newman T.J., Straley J.P., Qi X. (2000). Low-dimensional Bose liquids: Beyond the Gross-Pitaevskii approximation. Phys. Rev. Lett. 85(6):1146–1149

    Article  ADS  Google Scholar 

  26. Landau, L., Lifschitz, E.: Physique théorique (“Landau-Lifchitz”). Tome III: Mécanique quantique. Théorie non relativiste. Moscow: Éditions Mir, 1967, Deuxième édition, Traduit du russe par Édouard Gloukhian

  27. Lannes D., Rauch J. (2001). Validity of nonlinear geometric optics with times growing logarithmically. Proc. Amer. Math. Soc. 129(4):1087–1096

    Article  MATH  MathSciNet  Google Scholar 

  28. Majda, A.: Compressible fluid flow and systems of conservation laws in several space variables. Applied Mathematical Sciences, Vol. 53, New York: Springer-Verlag, 1984

  29. Makino T., Ukai S., Kawashima S. (1986). Sur la solution à support compact de l’équation d’Euler compressible. Japan J. Appl. Math. 3(2):249–257

    Article  MATH  MathSciNet  Google Scholar 

  30. Pitaevskii, L., Stringari, S.: Bose-Einstein condensation. International Series of Monographs on Physics, Vol. 116, Oxford: The Clarendon Press Oxford University Press, 2003

  31. Rauch, J., Keel, M.: Lectures on geometric optics. In: Hyperbolic equations and frequency interactions (Park City, UT, 1995), pp. 383–466. Providence, RI: Amer. Math. Soc., 1999

  32. Reed M., Simon B. (1975). Methods of modern mathematical physics. II. Fourier analysis, self-adjointness. Academic Press [Harcourt Brace Jovanovich Publishers], New York

    MATH  Google Scholar 

  33. Schwartz, J.T.: Nonlinear functional analysis. New York Gordon and Breach Science Publishers, 1969, see Notes by H. Fattorini, R. Nirenberg, and H. Porta,: with an additional chapter by Hermann Karcher, Notes on Mathematics and its Applications

  34. Sulem C., Sulem P.-L. (1999) The nonlinear Schrödinger equation, self-focusing and wave collapse. Springer-Verlag, New York

    MATH  Google Scholar 

  35. Taylor M. (1997). Partial differential equations. III. Applied Mathematical Sciences, Vol. 117, Springer-Verlag, New York

    Google Scholar 

  36. Tian F.-R., Ye J. (1999). On the Whitham equations for the semiclassical limit of the defocusing nonlinear Schrödinger equation. Comm. Pure Appl. Math. 52(6):655–692

    Article  MathSciNet  Google Scholar 

  37. Tovbis A., Venakides S., Zhou X. (2004). On semiclassical (zero dispersion limit) solutions of the focusing nonlinear Schrödinger equation. Comm. Pure Appl. Math. 57(7):877–985

    Article  MATH  MathSciNet  Google Scholar 

  38. Yajima K., Zhang G. (2001). Smoothing property for Schrödinger equations with potential superquadratic at infinity. Commun. Math. Phys. 221(3):573–590

    Article  MATH  MathSciNet  ADS  Google Scholar 

  39. Yajima K., Zhang G. (2004). Local smoothing property and Strichartz inequality for Schrödinger equations with potentials superquadratic at infinity. J. Differ. Eqs. 202(1):81–110

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rémi Carles.

Additional information

Communicated by P. Constantin

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carles, R. WKB Analysis for Nonlinear Schrödinger Equations with Potential. Commun. Math. Phys. 269, 195–221 (2007). https://doi.org/10.1007/s00220-006-0077-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-006-0077-2

Keywords

Navigation