Skip to main content
Log in

Continuous Phase Transitions for Dynamical Systems

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We study the asymptotic expansion of the topological pressure of one–parameter families of potentials at a point of non-analyticity. The singularity is related qualitatively and quantitatively to non–Gaussian limit laws and to slow decay of correlations with respect to the equilibrium measure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aaronson J., Denker M., Urbański M. (1993). Ergodic theory for Markov fibred systems and parabolic rational maps. Trans. AMS 337:495–548

    Article  MATH  Google Scholar 

  2. Aaronson J., Denker M. (2001). Local limit theorems for partial sums of stationary sequences generated by Gibbs-Markov maps. Stoch. Dyn. 1(2):193–237

    Article  MathSciNet  MATH  Google Scholar 

  3. Bálint P., Gouëzel S. (2006). Limit theorems in the stadium billiard. Commun. Math. Phys. 263, 2, 461–512

    Google Scholar 

  4. Bingham N.H., Goldie C.M., Teugels J.L. (1987). Regular variation. Encyclopedia of Math. and its Appl. 27, Cambridge Univ. Press, Cambridge

    MATH  Google Scholar 

  5. Binney J.J., Dowrick N.J., Fisher A.J., Newman M.E.J. (1992). The theory of critical phenomena, an introduction to the renormalization group. Oxford Science Publications, Oxford University Press, Oxford

    MATH  Google Scholar 

  6. Bowen R. (1975). Equilibrium states and the ergodic theory of Anosov diffeomorphisms. Lecture Notes in Mathematics, Vol. 470. Springer-Verlag, Berlin-New York

    MATH  Google Scholar 

  7. Buzzi J., Sarig O. (2003). Uniqueness of equilibrium measures for countable Markov shifts and multi-dimensional piecewise expanding maps. Erg. Th. Dynam. Sys. 23:1383–1400

    Article  MathSciNet  MATH  Google Scholar 

  8. Eagleson, G.K.: Some simple conditions for limit theorems to be mixing. (Russian) Teor. Verojatnost. i Primenen. 21(3), 653–660 (1976) Engl. Transl. in Theor. Probab. Appl. 21(3), 637–642 (1976)

  9. Ellis R.S. (1985). Entropy, large deviations, and statistical mechanics. Grund. Math. Wissenschaften 271, Springer Verlag, Berlin Heidelberg-Newyork

    MATH  Google Scholar 

  10. Feller W. (1971). An introduction to probability theory and its applications Volume II, Second edition. John Wiley & Sons, Newyork

    Google Scholar 

  11. Fisher M.E., Felderhof B.U. (1970). Phase transition in one–dimensional cluster–interaction fluids: IA. Thermodynamics, IB. Critical behavior. II. Simple logarithmic model. Ann. Phy. 58:177–280

    ADS  Google Scholar 

  12. Gnedenko, B.V., Kolmogorov, A.N.: Limit distributions for sums of independent random variables. Translated and annotated by K.L. Chung, with an Appendix by J.L. Doob. Readings MA: Addison–Wesley Publishing Company, 1954

  13. Gouëzel S. (2004). Sharp polynomial estimates for the decay of correlations. Israel J. Math. 139:29–65

    Article  MathSciNet  MATH  Google Scholar 

  14. Gouëzel S. (2004). Central limit theorem and stable laws for intermittent maps. Probab. Theory Related Fields 128(1):82–122

    Article  MathSciNet  MATH  Google Scholar 

  15. Gurevič B.M. (1969). Topological entropy of a countable Markov chain. Dokl. Akad. Nauk SSSR 187:715–718

    MathSciNet  Google Scholar 

  16. Gurevich B.M. (1984). A variational characterization of one-dimensional countable state Gibbs Random field. Z. ahrscheinlichkeitstheorie verw. Gebiete 68:205–242

    Article  MathSciNet  MATH  Google Scholar 

  17. Haydn N., Isola S. (2001). Parabolic rational maps. J. London Math. Soc. 63(2):673–689

    Article  MathSciNet  MATH  Google Scholar 

  18. Hilfer R. (1993). Classification theory for anequilibrium phase transitions. Phys. Rev. E 48(4):2466–2475

    Article  ADS  MathSciNet  Google Scholar 

  19. Hofbauer F. (1977). Examples for the non–uniqueness of the equilibrium states. Trans. AMS 228:223–241

    Article  MathSciNet  MATH  Google Scholar 

  20. Kato T. Perturbation theory for linear operators Reprint of the 1980 edition. Classics in Mathematics.Berlin: Springer-Verlag, (1995).

  21. Keane M. (1972). Strongly mixing g-measures. Invent. Math. 16:309–324

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Lopes A.O. (1993). The Zeta function, non–differentiability of pressure, and the critical exponent of transition. Adv. Math. 101(2):133–165

    Article  MathSciNet  MATH  Google Scholar 

  23. Martin–Löf A. (1973). Mixing properties, differentiability of the free energy and the central limit theorem for a pure phase in the Ising model at low temperature. Commun. Math. Phys. 32:75–92

    Article  ADS  Google Scholar 

  24. Urbański M., Mauldin R.D. (2001). Gibbs states on the symbolic space over an infinite alphabet. Israel J. Math. 125:93–130

    Article  MathSciNet  MATH  Google Scholar 

  25. Mauldin, R.D., Urbański, M.: Graph directed Markov systems; Geometry and dynamics of limit sets. Cambridge Tracts in Mathematics, 148, Cambridge: Cambridge University Press, Cambridge, 2003.

  26. Melbourne I., Török A. (2004). Statistical limit theorems for suspension flows. Israel J. Math. 194:191–210

    Article  Google Scholar 

  27. Nagaev S.V. (1957). Some limit theorems for stationary Markov chains. (Russian) Teor. Veroyatnost. i Primenen. 2:389–416

    MathSciNet  Google Scholar 

  28. Prellberg T., Slawny J. (1992). Maps of intervals with indifferent fixed points: thermodynamic formalism and phase transitions. J. Stat. Phys. 66(1–2):503–514

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Ruelle D. (2004). Thermodynamic Formalism, The mathematical structures of equilibrium statistical mechanics. 2nd Ed. Cambridge Mathematical Library. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  30. Sarig O.M. (1999). Thermodynamic Formalism for Countable Markov shifts. Erg. Th. Dyn. Sys. 19:1565–1593

    Article  MathSciNet  MATH  Google Scholar 

  31. Sarig O. (2001). Phase Transitions for Countable Markov Shifts. Commun. Math. Phys. 217:555–577

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Sarig O. (2003). Characterization of existence of Gibbs measures for Countable Markov shifts. Proc. of AMS. 131(6):1751–1758

    Article  MathSciNet  MATH  Google Scholar 

  33. Sarig O. (2001). Thermodynamic formalism for null recurrent potentials. Israel J. Math. 121:285–311

    Article  MathSciNet  MATH  Google Scholar 

  34. Sarig O. (2002). Subexponential decay of correlations. Invent. Math. 150:629–653

    Article  MathSciNet  MATH  Google Scholar 

  35. Sarig, O.: Thermodynamic formalism for countable Markov shifts. Tel-Aviv University Thesis (2000).

  36. Sarig O. (2000). On an example with a non-analytic topological pressure. C. R. Acad. Sci. Paris Sér. I Math. 330(4):311–315

    MathSciNet  MATH  Google Scholar 

  37. Stanley H.E. (1971). Introduction to phase transitions and critical phenomena. Oxford University Press, Oxford

    Google Scholar 

  38. Walters P. (1975). Ruelle’s operator theorem and g-measures. Trans. Amer. Math. Soc. 214:375–387

    Article  MathSciNet  MATH  Google Scholar 

  39. Wang, X.-J.: Abnormal fluctuations and thermodynamic phase transition in dynamical systems. Phys. Review A 39(6), 3214–3217

  40. Wang X.-J. (1989). Statistical physics of temporal intermittency. Phys. Review A 40(11):6647–6661

    Article  ADS  Google Scholar 

  41. Yuri M. (2003). Thermodynamic formalism for countable to one Markov systems. Trans. Amer. Math. Soc. 355(7):2949–2971

    Article  MathSciNet  MATH  Google Scholar 

  42. Yuri M. (2005). Phase transition, non-Gibbsianness and subexponential instability, Ergodic Thy Dynam. Syst. 25:1325–1342

    MathSciNet  MATH  Google Scholar 

  43. Zolotarev V.M. (1986). One–dimensional stable distributions. Transl. Math. Monog. 65, Amer. Math. Sec., Providence, RI

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omri Sarig.

Additional information

Communicated by G. Gallavotti

Dedicated to Y. Pesin on the occasion of his 60th birthday

This work was partially supported by NSF grant DMS–0400687.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sarig, O. Continuous Phase Transitions for Dynamical Systems. Commun. Math. Phys. 267, 631–667 (2006). https://doi.org/10.1007/s00220-006-0072-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-006-0072-7

Keywords

Navigation