Skip to main content
Log in

On \(\mathbb{Z}\)-Gradations of Twisted Loop Lie Algebras of Complex Simple Lie Algebras

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We define the twisted loop Lie algebra of a finite dimensional Lie algebra \(\mathfrak{g}\) as the Fréchet space of all twisted periodic smooth mappings from \(\mathbb{R}\) to \(\mathfrak{g}\). Here the Lie algebra operation is continuous. We call such Lie algebras Fréchet Lie algebras. We introduce the notion of an integrable \(\mathbb{Z}\)-gradation of a Fréchet Lie algebra, and find all inequivalent integrable \(\mathbb{Z}\)-gradations with finite dimensional grading subspaces of twisted loop Lie algebras of complex simple Lie algebras.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dieudonné J., (1960) Foundations of Modern Analysis. New York, Academic Press

    MATH  Google Scholar 

  2. Gorbatsevich, V. V., Onishchik, A. L., Vinberg, E. B.: Lie Groups and Lie Algebras. III. Structure of Lie Groups and Lie Algebras. Encyclopaedia of Mathematical Sciences, Vol. 41, Berlin: Springer, 1994

  3. Hamilton R. (1982) The inverse function theorem of Nash and Moser. Bull. Am. Math. Soc. 7, 65–222

    Article  MathSciNet  MATH  Google Scholar 

  4. Kac V.G., (1994) Infinite dimensional Lie algebras 3rd ed. Cambridge, Cambridge University Press

    Google Scholar 

  5. Kelley J.H., (1975) General Topology. New York, Springer Verlag

    MATH  Google Scholar 

  6. Kriegl A., Michor P. (1991) Aspects of the theory of infinite dimensional manifolds. Diff. Geom. Appl. 1, 159–176

    Article  MathSciNet  MATH  Google Scholar 

  7. Kriegl, A., Michor, P.: The Convenient Setting of Global Analysis. Mathematical Surveys and Monographs. Vol. 53. Providence, RI: Amer. Math. Soc., 1997

  8. Leznov A.N., Saveliev M.V., (1992) Group-theoretical Methods for Integration of Nonlinear Dynamical Systems. Basel, Birkhäuser

    MATH  Google Scholar 

  9. Milnor, J.: Remarks on infinite-dimensional Lie groups. In: Relativity, Groups and Topology II, DeWitt, B.S., Stora, R., eds., Amsterdam: North-Holland, 1984, pp. 1007–1057

  10. Nirov, Kh.S., Razumov, A.V.: On classification of non-abelian Toda systems. In: Geometrical and Topological Ideas in Modern Physics, Petrov, V. A., ed., Protvino: IHEP, 2002, pp. 213–221

  11. Onishchik A.L., Vinberg E.B., (1990) Lie Groups and Algebraic Groups. Berlin Springer, Berlin

    MATH  Google Scholar 

  12. Pressley A., Segal G., (1986) Loop Groups. Oxford, Clarendon Press

    MATH  Google Scholar 

  13. Razumov A.V., Saveliev M.V., (1997) Lie Algebras, Geometry, and Toda-type Systems. Cambridge, Cambridge University Press

    MATH  Google Scholar 

  14. Razumov A.V., Saveliev M.V. (1997) Multi-dimensional Toda-type systems. Theor. Math. Phys. 112, 999–1022

    Article  MATH  Google Scholar 

  15. Razumov, A. V., Saveliev, M. V., Zuevsky, A. B.: Non-abelian Toda equations associated with classical Lie groups. In: Symmetries and Integrable Systems, Sissakian, A. N., ed., Dubna: JINR, 1999, pp. 190–203

  16. Rudin W., (1973) Functional Analysis. New York, McGraw-Hill

    MATH  Google Scholar 

  17. Semenov–Tian–Shansky, M. A.: Integrable systems and factorization problems. In: Factorization and Integrable Systems, Gohberg, I., Manojlovic, N., Ferreira dos Santos, A., eds. Boston: Birkhäuser, 2003, pp. 155–218

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kh. S. Nirov.

Additional information

Communicated by L. Takhtajan

On leave of absence from the Institute for Nuclear Research of the Russian Academy of Sciences, 117312 Moscow, Russia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nirov, K.S., Razumov, A.V. On \(\mathbb{Z}\)-Gradations of Twisted Loop Lie Algebras of Complex Simple Lie Algebras. Commun. Math. Phys. 267, 587–610 (2006). https://doi.org/10.1007/s00220-006-0068-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-006-0068-3

Keywords

Navigation