Skip to main content
Log in

Charges and Fluxes in Maxwell Theory on Compact Manifolds with Boundary

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We investigate the charges and fluxes that can occur in higher-order Abelian gauge theories defined on compact space-time manifolds with boundary. The boundary is necessary to supply a destination to the electric lines of force emanating from brane sources, thus allowing non-zero net electric charges, but it also introduces new types of electric and magnetic flux. The resulting structure of currents, charges, and fluxes is studied and expressed in the language of relative homology and de Rham cohomology and the corresponding abelian groups. These can be organised in terms of a pair of exact sequences related by the Poincaré-Lefschetz isomorphism and by a weaker flip symmetry exchanging the ends of the sequences. It is shown how all this structure is brought into play by the imposition of the appropriately generalised Maxwell’s equations. The requirement that these equations be integrable restricts the world-volume of a permitted brane (assumed closed) to be homologous to a cycle on the boundary of space-time. All electric charges and magnetic fluxes are quantised and satisfy the Dirac quantisation condition. But through some boundary cycles there may be unquantised electric fluxes associated with quantised magnetic fluxes and so dyonic in nature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alvarez O. (1985) Topological quantisation and cohomology. Commun. Math. Phys. 100, 279–309

    Article  MATH  ADS  Google Scholar 

  2. Alvarez M., Olive D.I. (2000) The Dirac quantisation condition for fluxes on four-manifolds.Commun. Math. Phys. 210, 13–28

    Article  MATH  ADS  MathSciNet  Google Scholar 

  3. Alvarez M., Olive D.I. (2001) Spin and abelian electromagnetic duality on four-manifolds. Commun. Math. Phys. 217, 331–356

    Article  MATH  ADS  MathSciNet  Google Scholar 

  4. Bott R., Tu L.W., (1982) Differential forms in algebraic topology Graduate Texts in Mathematics 82. Berlin Heidelberg New York, Springer

    Google Scholar 

  5. Cremmer E., Julia B., Scherk J. (1978) Supergravity Theory In 11 Dimensions. Phys. Lett. 76, 409

    Google Scholar 

  6. Cremmer E., Scherk J. (1974) Spontaneous dynamical breaking of gauge symmetry in dual models. Nucl. Phys. 72, 117–124

    Article  ADS  Google Scholar 

  7. Dirac P.A.M. (1931) Quantised singularities in the electromagnetic field. Proc. Roy. Soc. A133, 60–72

    Article  MATH  ADS  Google Scholar 

  8. de Rham, G.: Variétés Différentiables. Paris: Hermann 1955; Differentiable Manifolds. Comprehensive Studies in Mathematics 266, Berlin Heidelberg New York: Springer, 1984

  9. Deser S., Gomberoff A., Henneaux M., Teitelboim C. (1997) Duality, self-duality, source and charge quantisation in abelian N-form theories. Phys. Lett. B 400, 80–86

    Article  ADS  MathSciNet  Google Scholar 

  10. Diemer T., Hadley M.J. (1999) Charge and the topology of space-time. Class. Quant. Grav. 16, 3567–3577

    Article  MATH  ADS  MathSciNet  Google Scholar 

  11. Flanders, H.: Differential forms, with applications to the physical sciences. New York: Academic, 1963, New York: Dover, 1989

  12. Figueroa-O’Farrill J., Stanciu S. (2001) D-brane charge, flux quantisation and relative (co)homology”. JHEP 0101: 006

    Article  ADS  MathSciNet  Google Scholar 

  13. Hodge W.V.D., (1952) The theory and applications of harmonic integrals. Cambridge, Cambridge University Press

    MATH  Google Scholar 

  14. Henneaux M., Teitelboim C. (1986) p-form Electrodynamics. Found. Phys. 16, 593–717

    Article  ADS  MathSciNet  Google Scholar 

  15. Kalb M., Ramond P. (1974) Classical Direct Interstring Action. Phys. Rev. D9, 2273–2284

    Article  ADS  Google Scholar 

  16. Kalkkinen J., Stelle K. (2003) Large gauge transformations in M-theory. J. Geom. Phys. 48, 100–132

    Article  MATH  ADS  MathSciNet  Google Scholar 

  17. M. Massey, W.S.: A basic course in algebraic topology. Graduate Texts in Mathematics 127, Berlin Heidelberg New York: Springer, 1991

  18. Misner C.W., Wheeler J.A. (1957) Classical Physics as Geometry. Annals of Phys. 2, 525–603

    Article  MATH  ADS  MathSciNet  Google Scholar 

  19. Moore G., Witten E. (2000) Self-duality, Ramond-Ramond fields, and K-theory. JHEP 0005, 32

    Article  ADS  MathSciNet  Google Scholar 

  20. Montonen C., Olive D.I. (1977) Magnetic monopoles as gauge particles? Phys. Lett. B72, 117–120

    Article  ADS  Google Scholar 

  21. Nepomechie R. (1985) Magnetic monopoles from antisymmetric tensor gauge fields. Phys. Rev. D31, 1921-1924

    Article  ADS  MathSciNet  Google Scholar 

  22. Orland P. (1982) Instantons and Disorder in Antisymmetric Tensor gauge fields. Nucl. Phys. B205[FS8]: 107–118

    Article  ADS  MathSciNet  Google Scholar 

  23. Schwarz A. Topology for Physicists. Comprehensive Studies in Mathematics 308, Berlin Heidelberg New York: Springer, 1994

  24. Schwinger J.S. (1969) A Magnetic Model Of Matter. Science 165, 757

    Article  ADS  Google Scholar 

  25. Sen A. (1994) Dyon-monopole bound states, self-dual harmonic forms on the multimonopole moduli space, and SL(2, \(\mathbb{Z})\) invariance in string theory. Phys. Lett. 329, 217-221

    MathSciNet  Google Scholar 

  26. Sorkin R. (1977) On the relation between charge and topology. J. Phys. A10, 717–725

    Article  ADS  MathSciNet  Google Scholar 

  27. Sorkin R. (1979) The quantum electromagnetic field in multiply connected space. J. Phys. A12, 403–421

    Article  ADS  MathSciNet  Google Scholar 

  28. Strominger A. (1996) Open p-branes. Phys. Lett. B 383, 44–47

    Article  MATH  ADS  MathSciNet  Google Scholar 

  29. Teitelboim C. (1986) Gauge invariance for extended objects. Phys. Lett. B 167, 63–68

    Article  ADS  MathSciNet  Google Scholar 

  30. Teitelboim C. (1986) Monopoles of higher rank. Phys. Lett. B 167, 69–72

    Article  ADS  MathSciNet  Google Scholar 

  31. Verlinde E. (1995) Global aspects of electric-magnetic duality. Phys. Lett. B 455, 211–228

    MATH  MathSciNet  Google Scholar 

  32. Witten E. (1979) Dyons Of Charge eθ / 2 π. Phys. Lett. B86, 283–287

    Article  ADS  Google Scholar 

  33. Witten E. (1995) On S-duality in abelian gauge theory. Selecta Math (NS) 1, 383–410

    Article  MATH  MathSciNet  Google Scholar 

  34. Witten E. (1997) On flux quantization in M-theory and the effective action. J. Geom. Phys. 22, 1–13

    Article  MATH  ADS  MathSciNet  Google Scholar 

  35. Witten E. (2001) Overview of K-theory applied to strings. Int. J. Mod. Phys. A 16, 693

    Article  MATH  ADS  MathSciNet  Google Scholar 

  36. Wu T.T., Yang C.N. (1975) Concept of non-integrable phase factors and global formulation of gauge fields. Phys. Rev. D12, 3845–3857

    Article  ADS  MathSciNet  Google Scholar 

  37. Zucchini R. (2003) Abelian duality and Wilson loops. Commun. Math. Phys. 242, 473–500

    MATH  ADS  MathSciNet  Google Scholar 

  38. Zwanziger D. (1968) Quantum Field Theory Of Particles With Both Electric And Magnetic Charges. Phys. Rev. 176: 1489

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcos Alvarez.

Additional information

Communicated by G.W. Gibbons

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alvarez, M., Olive, D.I. Charges and Fluxes in Maxwell Theory on Compact Manifolds with Boundary. Commun. Math. Phys. 267, 279–305 (2006). https://doi.org/10.1007/s00220-006-0065-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-006-0065-6

Keywords

Navigation