Skip to main content
Log in

Carleman Estimates and Absence of Embedded Eigenvalues

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Let L = −Δ− W be a Schrödinger operator with a potential \(W\in L^{\frac{n+1}{2}}(\mathbb{R}^n)\), \(n \geq 2\). We prove that there is no positive eigenvalue. The main tool is an \(L^{p}-L^{p^\prime}\) Carleman type estimate, which implies that eigenfunctions to positive eigenvalues must be compactly supported. The Carleman estimate builds on delicate dispersive estimates established in [7]. We also consider extensions of the result to variable coefficient operators with long range and short range potentials and gradient potentials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Froese R., Herbst I. (1982/83): Exponential bounds and absence of positive eigenvalues for N-body Schrödinger operators. Commun. Math. Phys., 87(3): 429–447

    Article  MATH  ADS  MathSciNet  Google Scholar 

  2. Froese R., Herbst I., Hoffmann-Ostenhof M., Hoffmann-Ostenhof T. (1982): On the absence of positive eigenvalues for one-body Schrödinger operators. J. Analyse Math. 41, 272–284

    Article  MATH  MathSciNet  Google Scholar 

  3. Ionescu A.D., Jerison D. (2003): On the absence of positive eigenvalues of Schrödinger operators with rough potentials. Geom. Funct. Anal. 13(5): 1029–1081

    Article  MATH  MathSciNet  Google Scholar 

  4. Kenig C.E., Ruiz A., Sogge C.D. (1987): Uniform Sobolev inequalities and unique continuation for second order constant coefficient differential operators. Duke Math. J. 55(2): 329–347

    Article  MATH  MathSciNet  Google Scholar 

  5. Koch H., Tataru D. (2001): Carleman estimates and unique continuation for second-order elliptic equations with nonsmooth coefficients. Comm. Pure Appl. Math. 54(3): 339–360

    Article  MATH  MathSciNet  Google Scholar 

  6. Koch H., Tataru D. (2002): Sharp counterexamples in unique continuation for second order elliptic equations. J. Reine Angew. Math. 542, 133–146

    MATH  MathSciNet  Google Scholar 

  7. Koch H., Tataru D. (2005): Dispersive estimates for principally normal pseudodifferential operators. Comm. Pure Appl. Math. 58(2): 217–284

    Article  MATH  MathSciNet  Google Scholar 

  8. Reed M., Simon B. (1978): Methods of modern mathematical physics. IV. Analysis of operators. New York: Academic Press [Harcourt Brace Jovanovich Publishers]

  9. Soffer A., Weinstein M.I. (1998): Time dependent resonance theory. Geom. Funct. Anal. 8(6): 1086–1128

    Article  MATH  MathSciNet  Google Scholar 

  10. Sogge C.D. (1993): Fourier integrals in classical analysis. Volume 105 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  11. Tataru D. (2002): On the Fefferman-Phong inequality and related problems. Comm. Partial Differ. Eq. 27(11-12): 2101–2138

    Article  MATH  MathSciNet  Google Scholar 

  12. von Neumann J., Wigner E.P. (1929): Über merkwürdige diskrete Eigenwerte. Z. Phys. 30, 465–467

    Google Scholar 

  13. Wolff, T.H.: Recent work on sharp estimates in second order elliptic unique continuation problems. In: Fourier analysis and partial differential equations (Miraflores de la Sierra, 1992), Boca Raton, FL: CRC, 1995,pp. 99-128

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Tataru.

Additional information

Communicated by B. Simon

The first author was partially supported by DFG grant KO1307/1 and also by MSRI for Fall 2005

The second author was partially supported by NSF grants DMS0354539 and DMS 0301122 and also by MSRI for Fall 2005

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koch, H., Tataru, D. Carleman Estimates and Absence of Embedded Eigenvalues. Commun. Math. Phys. 267, 419–449 (2006). https://doi.org/10.1007/s00220-006-0060-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-006-0060-y

Keywords

Navigation