Skip to main content
Log in

Quasiperiodic Solutions for Dissipative Boussinesq Systems

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

In this paper we analyze the behavior of the solution of the dissipative Boussinesq systems

$$\partial_t u = -\partial_x v - \alpha \partial_{xxx} v +\beta \partial_{xxt} u - \partial_x(uv)$$
$$\partial_t v = - \partial_x u +c \partial_{xxx} u + \beta \partial_{xxt} v - v \partial_x v$$

where α, β, c > 0 are parameters. Those systems model two-dimensional small amplitude long wavelength water waves. For α ≤ 1, this equation is ill-posed and most initial conditions do not lead to solutions. Nevertheless, we show that, for almost every β, c and almost every α ≤ 1, it admits solutions that are quasiperiodic in time. The proof uses the fact that the equation leaves invariant a smooth center manifold and for the restriction of the Boussinesq system to the center manifold, uses arguments of classical perturbation theory by considering the Hamiltonian formulation of the problem and studying the Birkhoff normal form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bambusi, D. Lyapunov center theorem for some nonlinear PDE’s: a simple proof. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 29, 823–837 (2000)

    Google Scholar 

  2. Bambusi D., Paleari S. (2001) Normal form and exponential stability for some nonlinear string equations. Z. Angew. Math. Phys. 52, 1033–1052

    Article  MathSciNet  MATH  Google Scholar 

  3. Berti M., Bolle P. (2003) Periodic solutions of nonlinear wave equations with general nonlinearities. Commun. Math. Phys. 243, 315–328

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Berti M., Bolle P. (2004) Multiplicity of periodic solutions of nonlinear wave equations. Nonlin. Anal. 56, 1011–1046

    Article  MathSciNet  MATH  Google Scholar 

  5. Bona J., Chen M. (1998) A Boussinesq system for two-way propagation of nonlinear dispersive waves. Physica D. 15, 191–224

    Article  ADS  MathSciNet  Google Scholar 

  6. Bona J., Chen M., Saut J. (2002) Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media. I: derivation and linear theory. J. Nonlin. Sci. 12, 283–318

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Bona J., Pritchard G., Scott L. (1981) An evaluation of a model equation for water waves. Philos. Trans. Royal. Soc. London, Ser. A 302, 457–510

    Article  ADS  MathSciNet  Google Scholar 

  8. Bourgain J. (1995) Construction of periodic solutions of nonlinear wave equations in higher dimension. Geom. Funct. Anal. 5, 629–639

    Article  MathSciNet  MATH  Google Scholar 

  9. Calsina À., Mora X., Solà-Morales J. (1993) The dynamical approach to elliptic problems in cylindrical domains, and a study of their parabolic singular limit. J. Diff. Eq. 102, 244–304

    Article  MATH  Google Scholar 

  10. Chierchia C., You J. (2000) KAM tori for 1D nonlinear wave equations with periodic boundary conditions. Commun. Math. Phys. 211, 497–525

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Conte R., Mussette M., Pickering A. (1994) Factorization of the “classical Boussinesq” system. J. Phys. A 27, 2831–2836

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Craig W. (1985) An existence theory for water waves, and Boussinesq and Korteweg-de Vries scaling limits. Commun. PDE 10, 787–1003

    Article  MathSciNet  MATH  Google Scholar 

  13. Craig W, Groves M. (1994) Hamiltonian long-wave approximations to the water-wave problem. Wave Motion 19, 367–389

    Article  MathSciNet  MATH  Google Scholar 

  14. Craig W., Wayne C. (1993) Newton’s method and periodic solutions of nonlinear wave equations. Comm. Pure Appl. Math. 46, 1409–1498

    Article  MathSciNet  MATH  Google Scholar 

  15. El G., Grimshaw R., Pavlov M. (2001) Integrable shallow-water equations and undular bores. Stud. Appl. Math. 106, 157–186

    Article  MathSciNet  MATH  Google Scholar 

  16. Gentile, G., Mastropietro, V. Construction of periodic solutions of nonlinear wave equations with Dirichlet boundary conditions by the Lindstedt series method. J. Math. Pures Appl. (9) 83, 1019–1065 (2004)

    Google Scholar 

  17. Groves M., Toland J. (1997) On variational formulations for steady water waves. Arch. Rat. Mech. Anal. 137, 203–226

    Article  MathSciNet  MATH  Google Scholar 

  18. Iooss G., Kirchgässner K. (1992) Water waves for small surface tension: an approach via normal form. Proc. Roy. Soc. Edinburgh Sect. A 122, 267–299

    MathSciNet  MATH  Google Scholar 

  19. Iooss G., Mielke A. (1991) Bifurcating time-periodic solutions of Navier–Stokes equations in infinite cylinders. J. Nonlin. Sci. 1, 107–146

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Kamchatnov A., Kraenkel R., Umarov B. (2003) Asymptotic soliton train solutions of Kaup–Boussinesq equations. Wave Motion 38, 355–365

    Article  MathSciNet  MATH  Google Scholar 

  21. Kirchgässner K. (1982) Wave-solutions of reversible systems and applications. J. Diff. Eq. 45, 113–127

    Article  MATH  Google Scholar 

  22. Kuksin S. (1987) Hamiltonian perturbations of infinite-dimensional linear systems with an imaginary spectrum. Funct. Anal. Appl. 21, 192–205

    Article  MathSciNet  MATH  Google Scholar 

  23. Kuksin, S., Pöschel, P. Invariant Cantor manifolds of quasi-periodic oscillations for a nonlinear Schrödinger equation. Ann. of Math. (2) 143, 149–179 (1996)

    Google Scholar 

  24. Matveev V., Yavor M. (1979) Solutions presque périodiques et à N-solitons de l’équation hydrodynamique non linéaire de Kaup. Ann. Inst. H. Poincaré Sect. A (N.S.) 31, 25–41

    MathSciNet  MATH  Google Scholar 

  25. Mielke A. (1988) Reduction of quasilinear elliptic equations in cylindrical domains with applications. Math. Methods Appl. Sci. 10, 51–66

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Mielke A. (1991) Hamiltonian and Lagrangian Flows on Center Manifolds. Lect. Notes in Math. 1489, Springer, Berlin Heidelberg New York

    MATH  Google Scholar 

  27. Mielke A. (1994) Essential manifolds for an elliptic problem in an infinite strip. J. Diff. Eq. 110, 322–355

    Article  MathSciNet  MATH  Google Scholar 

  28. Pöschel, J. A KAM-theorem for some nonlinear partial differential equations. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 23, 119–148 (1996)

    Google Scholar 

  29. Siegel C., Moser J. (1971) Lectures on Celestial Mechanics. Grundlehren der mathematischen Wissenschaften 187, Springer, Berlin Heidelberg New York

    MATH  Google Scholar 

  30. Valls, C. The Boussinesq system: dynamics on the center manifold. Comm. Pure and Applied Anal., to appear

  31. Zehnder E. (1976) Generalized implicit function theorems with applications to some small divisor problems. II. Comm. Pure Appl. Math. 29, 49–111

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia Valls.

Additional information

Communicated by P. Constantin

Supported by the Center for Mathematical Analysis, Geometry, and Dynamical Systems, and through Fundação para a Ciência e a Tecnologia by Programs POCTI/FEDER, POSI, and POCI 2010/Fundo Social Europeu, and the grant SFRH/BPD/14404/2003.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Valls, C. Quasiperiodic Solutions for Dissipative Boussinesq Systems. Commun. Math. Phys. 265, 305–331 (2006). https://doi.org/10.1007/s00220-006-0026-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-006-0026-0

Keywords

Navigation