Skip to main content
Log in

The Pearcey Process

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

The extended Airy kernel describes the space-time correlation functions for the Airy process, which is the limiting process for a polynuclear growth model. The Airy functions themselves are given by integrals in which the exponents have a cubic singularity, arising from the coalescence of two saddle points in an asymptotic analysis. Pearcey functions are given by integrals in which the exponents have a quartic singularity, arising from the coalescence of three saddle points. A corresponding Pearcey kernel appears in a random matrix model and a Brownian motion model for a fixed time. This paper derives an extended Pearcey kernel by scaling the Brownian motion model at several times, and a system of partial differential equations whose solution determines associated distribution functions. We expect there to be a limiting nonstationary process consisting of infinitely many paths, which we call the Pearcey process, whose space-time correlation functions are expressible in terms of this extended kernel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adler, M., van Moerbeke, P.: A PDE for the joint distributions of the Airy process. http://arxiv.org/list/math.PR/0302329, 2003; PDEs for the joint distribution of the Dyson, Airy and Sine Processes. Ann. prob., 33, 1326–1361 (2005)

    Google Scholar 

  2. Aldous, D., Diaconis, P.: Longest increasing subsequences: from patience sorting to the Baik-Deift-Johansson theorem. Bull. Amer. Math. Soc. 36, 413–432 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  3. Aptekarev, A.I., Bleher, P.M., Kuijlaars, A.B.J.: Large n limit of Gaussian random matrices with external source, Part II. Commun. Math. Phys., 259, 367–389, (2005)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  4. Bleher, P.M., Kuijlaars, A.B.J.: Random matrices with an external source and multiple orthogonal polynomials. Int. Math. Res. Not. 2004, No. 3, 109–129

  5. Bleher, P.M., Kuijlaars, A.B.J.: Large n limit of Gaussian random matrices with external source, Part I. Commun. Math. Phys., 252, 43–76, (2004)

    Article  ADS  MathSciNet  Google Scholar 

  6. Brézin, E., Hikami, S.: Universal singularity at the closure of a gap in a random matrix theory. Phys. Rev. E 57, 4140–4149 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  7. Brézin, E., Hikami, S.: Level spacing of random matrices in an external source. Phys. Rev. E 58, 7176–7185 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  8. Eynard, B., Mehta, M.L.: Matrices coupled in a chain. I. Eigenvalue correlations. J. Phys. A: Math. Gen. 31, 4449–4456 (1998)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  9. Ferrari, P.L., Prähofer, M., Spohn, H.: Stochastic growth in one dimension and Gaussian multi-matrix models. http://arxiv.org./list/math-ph/0310053, 2003

  10. Johansson, K.: Toeplitz determinants, random growth and determinantal processes. Proc. Inter. Congress of Math., Vol. III (Beijing, 2002), Beijing: Higher Ed. Press, 2002, pp 53–62

  11. Johansson, K.: Discrete polynuclear growth and determinantal processes. Commun. Math. Phys. 242, 277–329 (2003)

    ADS  MATH  MathSciNet  Google Scholar 

  12. Karlin, S., McGregor, J.: Coincidence probabilities. Pacific J. Math. 9, 1141–1164 (1959)

    MATH  MathSciNet  Google Scholar 

  13. Lenard, A.: States of classical statistical mechanical systems of infinitely many particles, I. Arch. Rat. Mech. Anal. 59, 219–239 (1975)

    MathSciNet  Google Scholar 

  14. Lenard, A.: States of classical statistical mechanical systems of infinitely many particles, II. Arch. Rat. Mech. Anal. 59, 241–256 (1975)

    MathSciNet  Google Scholar 

  15. Okounkov, A., Reshetikhin, N.: Private communication with authors, June, 2003; Poitiers lecture, June 2004; Random skew plane partition and the pearay process, http://front.math.ucdavis.edu/math.CO/0503508, 2005

  16. Pearcey, T.: The structure of an electromagnetic field in the neighborhood of a cusp of a caustic. Philos. Mag. 37, 311–317 (1946)

    MathSciNet  Google Scholar 

  17. Prähofer, M., Spohn, H.: Scale invariance of the PNG droplet and the Airy process. J. Stat. Phys. 108, 1071–1106 (2002)

    Article  MATH  Google Scholar 

  18. Soshnikov,A.: Determinantal random point fields. Russ. Math. Surv 55, 923–975 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  19. Tracy, C.A. Widom, H.: Level-spacing distributions and the Airy kernel. Commun. Math. Phys. 159, 151–174 (1994)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  20. Tracy, C.A., Widom, H.: Distribution functions for largest eigenvalues and their applications. Proc. Inter. Congress of Math., Vol.I (Beijing, 2002), Beijing: Higher Ed. Press, 2002, pp 587–596

  21. Tracy, C.A., Widom, H.: Differential equations for Dyson processes. Commun. Math. Phys. 252, 7–41 (2004)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by H. Spohn

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tracy, C., Widom, H. The Pearcey Process. Commun. Math. Phys. 263, 381–400 (2006). https://doi.org/10.1007/s00220-005-1506-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-005-1506-3

Keywords

Navigation