Skip to main content
Log in

Fermionic Quantization and Configuration Spaces for the Skyrme and Faddeev-Hopf Models

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

The fundamental group and rational cohomology of the configuration spaces of the Skyrme and Faddeev-Hopf models are computed. Physical space is taken to be a compact oriented 3-manifold, either with or without a marked point representing an end at infinity. For the Skyrme model, the codomain is any Lie group, while for the Faddeev-Hopf model it is S 2. It is determined when the topology of configuration space permits fermionic and isospinorial quantization of the solitons of the model within generalizations of the frameworks of Finkelstein-Rubinstein and Sorkin. Fermionic quantization of Skyrmions is possible only if the target group contains a symplectic or special unitary factor, while fermionic quantization of Hopfions is always possible. Geometric interpretations of the results are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Aitchison, I.J.R.: Effective Lagrangians and soliton physics I: derivative expansion, and decoupling. Acta Phys. Polon. B18:3, 191–205 (1987)

    Google Scholar 

  2. Aitchison, I.J.R.: Berry phases, magnetic monopoles, and Wess-Zumino terms or how the Skyrmion got its spin. Acta Phys. Polon. B18:3, 207–235 (1987)

    Google Scholar 

  3. Adams, J.F.: Lectures on exceptional Lie groups. Chicago and London: The University of Chicago Press, 1996

  4. Auckly, D., Kapitanski, L.: Holonomy and Skyrme's Model. Commun. Math. Phys. 240, 97–122 (2003)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  5. Auckly, D., Kapitanski, L.: Analysis of the Faddeev Model. Commun. Math. Phys. 256, 611–620 (2005)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  6. Auckly, D., Kapitanski, L.: The Pontrjagin-Hopf invariants for Sobolev maps. In progress

  7. Balachandran, A., Marmo, G., Skagerstam, B., Stern, A.: Classical topology and quantum states. New Jersey: World Scientific, 1991

  8. Balachandran, A., Marmo, G., Simoni, A., Sparno, G.: Quantum bundles and their symmetries. Int. J. Mod. Phys. A 7:8, 1641–1667 (1982)

    Google Scholar 

  9. Birrell, N., Davies, P.: Quantum fields in curved space. Cambridge: Cambridge University Press, 1982

  10. Bopp, F., Haag, Z.: Über die möglichkeit von Spinmodellen. Zeits. fur Natur. 5a, 644 (1950)

    MATH  MathSciNet  Google Scholar 

  11. Bröcker, Th., tom Dieck, T.: Representation of compact Lie groups. New York: Springer-Verlag, 1985

  12. Dirac, P.: Quantized singularities in the electromagnetic field. Proc. Roy. Soc. London A133, 60–72 (1931)

    Google Scholar 

  13. Dirac, P.: The theory of magnetic poles. Phys. Rev. 74, 817–830 (1948)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  14. Federer, H: A study of function spaces by spectral sequences. Ann. of Math. 61, 340–361 (1956)

    Google Scholar 

  15. Finkelstein, D., Rubinstein, J.: Connection between spin statisitics and kinks. J. Math. Phys. 9, 1762–1779 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  16. Giulini, D.: On the possibility of spinorial quantization in the Skyrme model. Mod. Phys. Lett. A8, 1917–1924 (1993)

    Google Scholar 

  17. Gottlieb, D.: Lifting actions in fibrations. In: Geometric applications of homotopy theory I. Lecture Notes in Mathematics 657, Berlin-Heidelberg-New york: Springer, 1978, pp. 217–253

  18. Halzen, F., Martin, A.: Quarks and Leptons: an introductory course in modern particle physics. New York: John Wiley and Sons, 1984

  19. Hattori, A., Yoshida, T.: Lifting group actions in fiber bundles. Japan J. Math. 24, 13–25 (1976)

    MathSciNet  Google Scholar 

  20. Helgason, S.: Differential geometry, Lie groups and symmetric spaces. Providence, Rhode Island: Amer. Math. Soc., 2001

  21. Imbo, T.D., Shah Imbo, C., Sudarshan, E.C.G.: Identical particles, exotic statistics and braid groups. Phys. Lett. B 234, 103–107 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  22. Iwasawa, K.: On some types of topological groups. Ann. of Math. 50:3, 507–558 (1949)

    Google Scholar 

  23. Kirby, R.C.: The topology of 4-manifolds. Lecture Notes in Mathematics 1374, New York: Springer-Verlag, 1985

  24. Krusch, S.: Homotopy of rational maps and quantization of Skyrmions. Annals Phys. 304, 103–127 (2003)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  25. Mimura, M., Toda, H.: Topology of Lie groups, I and II. Transl. Amer. Math. Soc., Providence, Rhode Island: Amer. Math. Soc., 1991

  26. Particle data group: Review of particle physics. http://pdg.lbl.gov

  27. Pontrjagin, L.: A classification of mappings of the 3-dimensional complex into the 2-dimensional sphere. Mat. Sbornik N.S. 9:51, 331–363 (1941)

    Google Scholar 

  28. Ramadas, T.R.: The Wess-Zumino term and fermionic solitons. Commun. Math. Phys. 93, 355–365 (1984)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  29. Schulman, L.: A path integral for spin. Phys. Rev. 176:5, 1558–1569 (1968)

    Google Scholar 

  30. Simms, D.J., Woodhouse, N.M.J.: Geometric quantization. Lecture Notes in Physics 53, Berlin: Springer-Verlag, 1977

  31. Skyrme, T.H.R.: A unified field theory of mesons and baryons. Nucl. Phys. 31, 555–569 (1962)

    MATH  Google Scholar 

  32. Sorkin, R.: A general relation between kink-exchange and kink-rotation. Commun. Math. Phys. 115, 421–434 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  33. Spanier, E.H.: Algebraic topology. New York: Springer, 1966

  34. Steenrod, N.: The topology of fiber bundles. Princeton: Princeton University Press, 1951

  35. Witten, E.: Current algebra, baryons and quark confinement. Nucl. Phys. B233, 433–444 (1983)

    Google Scholar 

  36. Zaccaria, F., Sudarshan, E., Nilsson, J., Mukunda, N., Marmo, G., Balachandran, A.: Universal unfolding of Hamiltonian systems: from symplectic structures to fibre bundles. Phys. Rev. D27, 2327–2340 (1983)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by L. Takhtajan

The first author was partially supported by NSF grant DMS-0204651

The second author was partially supported by EPSRC grant GR/R66982/01

Rights and permissions

Reprints and permissions

About this article

Cite this article

Auckly, D., Speight, M. Fermionic Quantization and Configuration Spaces for the Skyrme and Faddeev-Hopf Models. Commun. Math. Phys. 263, 173–216 (2006). https://doi.org/10.1007/s00220-005-1496-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-005-1496-1

Keywords

Navigation