Skip to main content
Log in

The Map Between Conformal Hypercomplex/ Hyper-Kähler and Quaternionic(-Kähler) Geometry

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

An Erratum to this article was published on 26 June 2007

Abstract

We review the general properties of target spaces of hypermultiplets, which are quaternionic-like manifolds, and discuss the relations between these manifolds and their symmetry generators. We explicitly construct a one-to-one map between conformal hypercomplex manifolds (i.e. those that have a closed homothetic Killing vector) and quaternionic manifolds of one quaternionic dimension less. An important role is played by `ξ-transformations', relating complex structures on conformal hypercomplex manifolds and connections on quaternionic manifolds. In this map, the subclass of conformal hyper-Kähler manifolds is mapped to quaternionic-Kähler manifolds. We relate the curvatures of the corresponding manifolds and furthermore map the symmetries of these manifolds to each other.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zumino, B.: Supersymmetry and Kähler manifolds. Phys. Lett. B87, 203 (1979)

    Google Scholar 

  2. Alvarez-Gaume, L., Freedman, D. Z.: Geometrical structure and ultraviolet finiteness in the supersymmetric sigma model. Commun. Math. Phys. 80, 443 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  3. Bagger, J., Witten, E.: Matter couplings in N=2 supergravity. Nucl. Phys. B222, 1 (1983)

    Google Scholar 

  4. Bergshoeff, E., Cucu, S., de Wit, T., Gheerardyn, J., Halbersma, R., Vandoren, S., Van Proeyen, A.: Superconformal N = 2, D = 5 matter with and without actions JHEP 10, 045, (2002)

    Google Scholar 

  5. Gheerardyn, J.: Aspects of on-shell supersymmetry. http://www.arXiv.org/abs/hep-th/0411126, Ph.D. thesis, Leuven University, 2004

  6. Salamon, S.: Differential geometry of quaternionic manifolds. Ann. Scient. Ec. Norm. Sup., 4ème serie 19, 31–55 (1986)

    Google Scholar 

  7. Alekseevsky, D. V., Marchiafava, S.: Quaternionic structures on a manifold and subordinated structures. Ann. Matem. pura appl. (IV) 171, 205–273 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  8. Gibbons, G. W., Papadopoulos, G., Stelle, K. S.: HKT and OKT geometries on soliton black hole moduli spaces. Nucl. Phys. B508, 623–658. (1997)

    Google Scholar 

  9. Michelson, J., Strominger, A.: The geometry of (super)conformal quantum mechanics. Commun. Math. Phys. 213, 1–17 (2000)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  10. Spindel, P., Sevrin, A., Troost, W., Van Proeyen, A.: Extended supersymmetric sigma models on group manifolds. 1. The complex structures. Nucl. Phys. B308, 662 (1988)

  11. Ferrara, S., Kaku, M., Townsend, P. K., van Nieuwenhuizen, P.: Gauging the graded conformal group with unitary internal symmetries. Nucl. Phys. B129, 125 (1977)

  12. Kaku, M., Townsend, P. K., van Nieuwenhuizen, P.: Properties of conformal supergravity. Phys. Rev. D17, 3179 (1978)

  13. Kaku, M., Townsend, P. K.: Poincaré supergravity as broken superconformal gravity. Phys. Lett. B76, 54 (1978)

    Google Scholar 

  14. Van Proeyen, A.: Special geometries, from real to quaternionic. http://arXiv.org/abs/hep-th/ 0110263, 2001 Proceedings of the `Workshop on special geometric structures in string theory', Bonn, 8-11/9/2001; Electronic library of Mathematics: http://www.emis.de/proceedings/SGSST2001/, 2001

  15. Galicki, K.: Geometry of the scalar couplings in N=2 supergravity models. Class. Quant. Grav. 9, 27–40 (1992)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  16. de Wit, B., Kleijn, B., Vandoren, S.: Rigid N = 2 superconformal hypermultiplets. In: Supersymmetries and Quantum Symmetries, Proc. Int. Sem. Dubna (1997), J. Wess, E.A. Ivanov, (eds.)Lecture Notes in Physics, Vol. 524, Springer, Berlin-Heidelberg, Newyork: 1999, p. 37

  17. de Wit, B., Kleijn, B., Vandoren, S.: Superconformal hypermultiplets, Nucl. Phys. B568, 475–502 (2000)

    Google Scholar 

  18. de Wit, B., Roček, M., Vandoren, S.: Hypermultiplets, hyperkähler cones and quaternion-Kähler geometry. JHEP 02, 039. (2001)

    Article  Google Scholar 

  19. Rosseel, J., Van Proeyen, A.: Hypermultiplets and hypercomplex geometry from 6 to 3 dimensions, Class. Quant. Grav. 21, 5503–5518 (2004)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  20. Sezgin, E., Tanii, Y.: Superconformal sigma models in higher than two dimensions. Nucl. Phys. B443, 70–84 (1995)

    Google Scholar 

  21. Swann, A.: HyperKähler and quaternionic Kähler geometry. Math. Ann. 289, 421–450 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  22. Pedersen, H., Poon, Y. S., Swann, A. F.: Hypercomplex structures associated to quaternionic manifolds. Diff. Geom. Appl. 9, 273–292 (1998)

    Article  MATH  Google Scholar 

  23. Fujimura, S.: Q-connections and their changes on almost quaternion manifolds. Hokkaido Math. J. 5, 239–248 (1976)

    MATH  MathSciNet  Google Scholar 

  24. Oproiu, V.: Integrability of almost quaternal structures. An. st. Univ. Iaşi 30, 75–84 (1984)

    MATH  MathSciNet  Google Scholar 

  25. Bergshoeff, E., Cucu, S., de Wit, T., Gheerardyn, J., Vandoren, S., Van Proeyen, A.: N = 2 supergravity in five dimensions revisited. Class. Quant. Grav. 21, 3015–3041 (2004)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  26. de Wit, B., Lauwers, P. G., Van Proeyen, A.: Lagrangians of N=2 supergravity - matter systems. Nucl. Phys. B255, 569 (1985)

  27. Oproiu, V.: Almost quaternal structures. An. st. Univ. Iaşi 23, 287–298 (1977)

    MATH  MathSciNet  Google Scholar 

  28. Ambrose, N., Singer, J.: A theorem on holonomy. Trans. AMS 75, 428–443 (1953)

    Article  MATH  MathSciNet  Google Scholar 

  29. Musso, E.: On the transformation group of a quaternion manifold. Boll. U.M.I., (7) 6-B, 67–78 (1992)

  30. Joyce, D.: Compact hypercomplex and quaternionic manifolds. J. Diff. Geom 35, 743–761 (1992)

    MATH  MathSciNet  Google Scholar 

  31. Barberis, M. L., Dotti-Miatello, I.: Hypercomplex structures on a class of solvable Lie groups. Quart. J. Math. Oxford (2) 47, 389–404 (1996)

    Google Scholar 

  32. Gentili, G., Marchiafava, S., Pontecorvo, M. eds.,: Quaternionic structures in mathematics and physics. 1996, Proceedings of workshop in Trieste, September 1994; ILAS/FM-6/1996, available on http://www.emis.de/proceedings/QSMP94/

  33. Marchiafava, S., Piccinni, P., Pontecorvo, M. eds.,: Quaternionic structures in mathematics and physics. World Scientific, 2001, Proceedings of workshop in Roma, September 1999; available on http://www.univie.ac.at/EMIS/proceedings/QSMP99/

  34. Obata, M.: Affine connections on manifolds with almost complex, quaternionic or Hermitian structure. Jap. J. Math. 26, 43–79 (1956)

    MathSciNet  Google Scholar 

  35. Ishihara, S.: Quaternion Kählerian manifolds. J. Diff. Geom. 9, 483–500 (1974)

    MATH  MathSciNet  Google Scholar 

  36. Salamon, S.: Quaternionic Kähler manifolds. Invent. Math. 67, 143–171 (1982)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  37. Wolf, J.: Complex homogeneous contact manifolds and quaternionic symmetric spaces. J. Math. Mech. 14, 1033–1047 (1963)

    Google Scholar 

  38. Bonan, E.: Sur les structures presque quaternioniennes. C.R. Acad. Sc. Paris 258, 792 (1964)

    MATH  MathSciNet  Google Scholar 

  39. Bonan, E.: Connexions presque quaternioniennes. C.R. Acad. Sc. Paris 258, 1696 (1964)

    MATH  MathSciNet  Google Scholar 

  40. Alekseevsky, D. V.: Riemannian spaces with exceptional holonomy group. Funct. Anal. Appl. 2, 97–105 (1968)

    Article  Google Scholar 

  41. Pons, J. M., Talavera, P.: Consistent and inconsistent truncations: Some results and the issue of the correct uplifting of solutions. Nucl. Phys. B678, 427–454 (2004)

    Google Scholar 

  42. Boyer, C. P., Galicki, K.: 3-Sasakian Manifolds. Surveys Diff. Geom. 7, 123–184 (1999)

    MathSciNet  Google Scholar 

  43. Alekseevsky, D. V.: Classification of quaternionic spaces with a transitive solvable group of motions. Math. USSR Izvestija 9, 297–339 (1975)

    Article  Google Scholar 

  44. de Wit, B., Roček, M., Vandoren, S.: Gauging isometries on hyperkähler cones and quaternion-Kähler manifolds, Phys. Lett. B511, 302–310 (2001)

    Google Scholar 

  45. Galicki, K.: A generalization of the momentum mapping construction for Quaternionic Kähler manifolds. Commun. Math. Phys. 108, 117 (1987)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  46. Van Proeyen, A.: Supergravity with Fayet-Iliopoulos terms and R-symmetry. In: Proceedings of the EC-RTN Workshop `The quantum structure of spacetime and the geometric nature of fundamental interactions', Kolymbari, Crete, 5-10/9/2004, Fortsch. Physik. 53, 997–1004 (2005)

    MATH  Google Scholar 

  47. de Wit, B., van Holten, J. W., Van Proeyen, A.: Central charges and conformal supergravity. Phys. Lett. B95, 51 (1980)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Bergshoeff.

Additional information

Communicated by G.W. Gibbons

An erratum to this article is available at http://dx.doi.org/10.1007/s00220-007-0266-7.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bergshoeff, E., Cucu, S., Wit, T. et al. The Map Between Conformal Hypercomplex/ Hyper-Kähler and Quaternionic(-Kähler) Geometry. Commun. Math. Phys. 262, 411–457 (2006). https://doi.org/10.1007/s00220-005-1475-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-005-1475-6

Keywords

Navigation