Skip to main content
Log in

Proof of Nishida's Conjecture on Anharmonic Lattices

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We prove Nishida's 1971 conjecture stating that almost all low-energetic motions of the anharmonic Fermi-Pasta-Ulam lattice with fixed endpoints are quasi-periodic. The proof is based on the formal computations of Nishida, the KAM theorem, discrete symmetry considerations and an algebraic trick that considerably simplifies earlier results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abraham, R., Marsden, J.E.: Foundations of mechanics. Second ed. Reading MA: Benjamin/Cummings Publishing Co., 1978

  2. Arnol'd, V.I., Avez, A.: Ergodic problems of classical mechanics. New York-Amsterdam: W. A. Benjamin, 1968

  3. Broer, H.W., Huitema, G.B., Sevryuk, M.B.: Quasi-periodic motions in families of dynamical systems. Berlin: Springer-Verlag, 1996

  4. Churchill, R.C., Kummer, M., Rod, D.L.: On averaging, reduction, and symmetry in Hamiltonian systems. J. Differ. Eqs. 49(3), 359–414 (1983)

    Google Scholar 

  5. Cushman, R.H., Bates, L.M.: Global aspects of classical integrable systems. Basel: Birkhäuser Verlag, 1997

  6. Duistermaat, J.J.: Bifurcation of periodic solutions near equilibrium points of Hamiltonian systems. In: Bifurcation theory and applications (Montecatini, 1983), LNM 1057, Berlin: Springer-Verlag, 1984, pp. 57–105

  7. Fermi, E., Pasta, J., Ulam, S.: Los Alamos report LA-1940. In: E. Fermi, Collected Papers II (1955), Chicago: Univ. Chicago Press, 1965, pp. 977–988

  8. Flaschka, H.: The Toda Lattice. II. Existence of integrals. Phys. Rev. B 9, 1924–1925 (1974)

    Google Scholar 

  9. Ford, J.: The Fermi-Pasta-Ulam problem: paradox turns discovery. Phys. Rep. 213(5), 271–310 (1992)

    Google Scholar 

  10. Gaeta, G.: Poincaré normal and renormalized forms. Acta Appl. Math. 70(1–3), 113–131 (2002)

    Google Scholar 

  11. Gardner, C.S., Greene, J.M., Kruskal, M.D., Miura, R.M.: Method for solving the Korteweg-de Vries equation. Phys. Rev. Lett. 19, 1095–1097 (1967)

    Google Scholar 

  12. Hemmer, P.C.: Dynamic and stochastic types of motion in the linear chain, Thesis, University of Trondheim, Trondheim, 1959

  13. Izrailev, F.M., Chirikov, B.V.: Statistical properties of a nonlinear string. Sov. Phys. Dokl. 11, 30–32 (1966)

    Google Scholar 

  14. Jackson, E.A.: Nonlinearity and irreversibility in lattice dynamics. Rocky Mountain J. Math. 8(1–2), 127–196 (1978)

    Google Scholar 

  15. Nishida, T.: A note on an existence of conditionally periodic oscillation in a one-dimensional anharmonic lattice. Mem. Fac. Engrg. Kyoto Univ. 33, 27–34 (1971)

    Google Scholar 

  16. Palais, R.S.: The symmetries of solitons. Bull. Amer. Math. Soc. (N.S.) 34(4), 339–403 (1997)

    Google Scholar 

  17. Poggi, P., Ruffo, S.: Exact solutions in the FPU oscillator chain. Physica D 103(1–4), 251–272 (1997)

    Google Scholar 

  18. Rink, B.: Symmetry and resonance in periodic FPU chains. Commun. Math. Phys. 218(3), 665–685 (2001)

    Google Scholar 

  19. Rink, B.: Symmetric invariant manifolds in the Fermi-Pasta-Ulam lattice. Physica D 175, 31–42 (2003)

    Google Scholar 

  20. Rink, B., Verhulst, F.: Near-integrability of periodic FPU-chains. Physica A 285, 467–482 (2000)

    Google Scholar 

  21. Sanders, J.A., On the theory of nonlinear resonance, Thesis, University of Utrecht, Utrecht, 1979

  22. Weissert, T.P.: The genesis of simulation in dynamics. New York: Springer-Verlag, 1997

  23. Zabuski, N.J., Kruskal, M.D.: Interaction of ``Solitons'' in a collisionless plasma and the recurrence of initial states. Phys. Rev. Lett. 15, 240–243 (1965)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bob Rink.

Additional information

Communicated by G. Gallavotti

Supported by an EPSRC postdoctoral fellowship.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rink, B. Proof of Nishida's Conjecture on Anharmonic Lattices. Commun. Math. Phys. 261, 613–627 (2006). https://doi.org/10.1007/s00220-005-1451-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-005-1451-1

Keywords

Navigation