Skip to main content
Log in

Poisson Boundary of the Dual of SU q (n)

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We prove that for any non-trivial product-type action α of SU q (n) (0<q<1) on an ITPFI factor N, the relative commutant is isomorphic to the algebra L () of bounded measurable functions on the quantum flag manifold . This is equivalent to the computation of the Poisson boundary of the dual discrete quantum group . The proof relies on a connection between the Poisson integral and the Berezin transform. Our main technical result says that a sequence of Berezin transforms defined by a random walk on the dominant weights of SU(n) converges to the identity on the quantum flag manifold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Accardi, L., Cecchini, C.: Conditional expectations in von Neumann algebras and a theorem of Takesaki. J. Funct. Anal. 45, 245–273 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  2. Berezin, F.A.: General concept of quantization. Commun. Math. Phys. 40, 153–174 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  3. Biane, Ph.: Marches de Bernoulli quantiques. In: Séminaire de Probabilités, XXIV, 1988/89, Lecture Notes in Math. 1426, Berlin: Springer, 1990, pp. 329–344

  4. Biane, Ph.: Équation de Choquet-Deny sur le dual d'un groupe compact. Probab. Theory Related Fields 94, 39–51 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  5. Biane, Ph.: Théorème de Ney-Spitzer sur le dual de SU(2). Trans. Amer. Math. Soc. 345, 179–194 (1994)

    Article  MathSciNet  Google Scholar 

  6. Boca, F.P.: Ergodic actions of compact matrix pseudogroups on C*-algebras. In: Recent advances in operator algebras (Orléans, 1992). Astérisque No. 232, 93–109 (1995)

    MATH  MathSciNet  Google Scholar 

  7. Collins, B.: Martin boundary theory of some quantum random walks. Ann. Inst. H. Poincaré Probab. Statist. 40, 367–384 (2004)

    MATH  ADS  Google Scholar 

  8. Dijkhuizen, M.S., Stokman, J.V.: Quantized flag manifolds and irreducible *-representations. Commun. Math. Phys. 203, 297–324 (1999)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  9. Duffield, N.G.: Classical and thermodynamic limits for generalized quantum spin systems. Commun. Math. Phys. 127, 27–39 (1990)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  10. Hayashi, T.: Harmonic function spaces of probability measures on fusion algebras. Publ. Res. Inst. Math. Sci. 36, 231–252 (2000)

    MATH  MathSciNet  Google Scholar 

  11. Helgason, S.: Differential geometry, Lie groups, and symmetric spaces. Graduate Studies in Mathematics 34, Providence, RI: Amer. Math. Soc., 2001. xxvi+641 pp.

  12. Hiai, F., Izumi, M.: Amenability and strong amenability for fusion algebras with applications to subfactor theory. Internat. J. Math. 9, 669–722 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  13. Høegh-Krohn, R., Landstad, M.B., Størmer, E.: Compact ergodic groups of automorphisms. Ann. of Math. (2) 114, 75–86 (1981)

    Google Scholar 

  14. Izumi, M.: Non-commutative Poisson boundaries and compact quantum group actions. Adv. Math. 169, 1–57 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  15. Izumi, M.: Non-commutative Poisson boundaries. In: Discrete geometric analysis, Contemp. Math. 347, Providence, RI: Amer. Math. Soc., 2004, pp. 69–81

  16. Kemeny, J.G., Snell, J.L., Knapp, A.W.: Denumerable Markov chains. Princeton, NJ-Toronto-London: D. Van Nostrand Co., Inc., 1966. xi+439 pp.

  17. Kaimanovich, V.A.: Bi-harmonic functions on groups. C. R. Acad. Sci. Paris Sér. I Math. 314, 259–264 (1992)

    MATH  MathSciNet  Google Scholar 

  18. Klimyk, A., Schmüdgen, K.: Quantum groups and their representations. Texts and Monographs in Physics. Berlin: Springer-Verlag, 1997. xx+552 pp.

  19. Korogodski, L.I., Soibelman, Y.S.: Algebras of functions on quantum groups. Part I. Mathematical Surveys and Monographs 56. Providence, RI: Amer. Math. Soc. 1998. x+150 pp.

  20. Landsman, N.P.: Strict quantization of coadjoint orbits. J. Math. Phys. 39, 6372–6383 (1998)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  21. Neshveyev, S., Tuset, L.: The Martin boundary of a discrete quantum group. J. Reine Angew. Math. 568, 23–70 (2004)

    MATH  MathSciNet  Google Scholar 

  22. Neshveyev, S., Tuset, L.: Quantum random walks and their boundaries. In: Analysis of (Quantum) Group Actions on Operator Algebras (Kyoto, 2003), 1332, 57–70 (2003)

    Google Scholar 

  23. Noumi, M., Yamada, H., Mimachi, K.: Finite-dimensional representations of the quantum group and the zonal spherical functions on U q (n-1)\U q (n). Japan. J. Math. (N.S.) 19, 31–80 (1993)

    MATH  MathSciNet  Google Scholar 

  24. Perelomov, A.: Generalized coherent states and their applications. Texts and Monographs in Physics. Berlin: Springer-Verlag, 1986. xii+320 pp.

  25. Petz, D.: Sufficiency of channels over von Neumann algebras. Quart. J. Math. Oxford Ser. 39(2), 97–108 (1988)

    MathSciNet  Google Scholar 

  26. Pimsner, M., Popa, S.: Entropy and index for subfactors. Ann. Sci. École Norm. Sup. 19(4), 57–106 (1986)

    MathSciNet  Google Scholar 

  27. Podkolzin, G.B., Vainerman, L.I.: Quantum Stiefel manifold and double cosets of quantum unitary group. Pacific J. Math. 188, 179–199 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  28. Revuz, D.: Markov chains. North-Holland Mathematical Library, Vol. 11. Amsterdam-Oxford: North-Holland Publishing Co. New York: American Elsevier Publishing Co., Inc., 1975. x+336 pp.

  29. Rieffel, M.A.: Matrix algebras converge to the sphere for quantum Gromov–Hausdorff distance. Mem. Amer. Math. Soc. 168(796), 67–91 (2004)

    MathSciNet  Google Scholar 

  30. Sawin, S.: Relative commutants of Hecke algebra subfactors. Amer. J. Math. 116, 591–604 (1994)

    MATH  MathSciNet  Google Scholar 

  31. Sawin, S.: Subfactors constructed from quantum groups. Amer. J. Math. 117, 1349–1369 (1995)

    MATH  MathSciNet  Google Scholar 

  32. Vaes, S.: Strictly outer actions of groups and quantum groups. J. Reine Angew. Math. 578, 147–184 (2005)

    MATH  MathSciNet  Google Scholar 

  33. Woronowicz, S.L.: Compact quantum groups. In: Symétries quantiques (Les Houches, 1995), Amsterdam: North-Holland, 1998, pp. 845–884

  34. Želobenko, D.P.: Compact Lie groups and their representations. Translations of Mathematical Monographs, Vol. 40. Providence, R.I.: Amer. Math. Soc. 1973. viii+448 pp.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaki Izumi.

Additional information

Communicated by Y. Kawahigashi

Supported by JSPS.

Partially supported by the Norwegian Research Council.

Supported by the SUP-program of the Norwegian Research Council.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Izumi, M., Neshveyev, S. & Tuset, L. Poisson Boundary of the Dual of SU q (n). Commun. Math. Phys. 262, 505–531 (2006). https://doi.org/10.1007/s00220-005-1439-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-005-1439-x

Keywords

Navigation