Skip to main content
Log in

Stability for Quasi-Periodically Perturbed Hill's Equations

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider a perturbed Hill's equation of the form +(p0(t)+ɛp1(t))ϕ=0, where p0 is real analytic and periodic, p1 is real analytic and quasi-periodic and ɛ ∈ℝ is ``small''. Assuming Diophantine conditions on the frequencies of the decoupled system, i.e. the frequencies of the external potentials p0 and p1 and the proper frequency of the unperturbed (ɛ=0) Hill's equation, but without making any assumptions on the perturbing potential p1 other than analyticity, we prove that quasi-periodic solutions of the unperturbed equation can be continued into quasi-periodic solutions if ɛ lies in a Cantor set of relatively large measure in where ɛ0 is small enough. Our method is based on a resummation procedure of a formal Lindstedt series obtained as a solution of a generalized Riccati equation associated to Hill's problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Avron, J.E., Simon, B.: Almost periodic Hill's equation and the rings of Saturn. Phys. Rev. Lett. 46(17), 1166–1168 (1981)

    Article  Google Scholar 

  2. Barata, J.C.A.: On Formal Quasi-Periodic Solutions of the Schrödinger Equation for a Two-Level System with a Hamiltonian Depending Quasi-Periodically on Time. Rev. Math. Phys. 12(1), 25–64 (2000)

    Article  Google Scholar 

  3. Bartuccelli, M.V., Gentile, G.: Lindstedt series for perturbations of isochronous systems: a review of the general theory. Rev. Math. Phys. 14(2), 121–171 (2002)

    Article  Google Scholar 

  4. Bohr, H.: Ueber fastperiodische ebene Bewegungen. Comment. Math. Helv. 4, 51–64 (1932) Bohr, H.: Kleinere Beiträge zur Theorie der Fastperiodischen Funktionen. Danske Vid. Selsk. Mat.-Fys. Medd. 10(10), 5–11 (1930)

    Article  MathSciNet  Google Scholar 

  5. Broer, H., Puig, J., Simó, C.: Resonance tongues and instability pockets in the quasi-periodic Hill-Schrödinger equation. Commun. Math. Phys. 241(2–3), 467–503 (2003)

    Google Scholar 

  6. Broer, H., Simó, C.: Hill's equation with quasi-periodic forcing: resonance tongues, instability pockets and global phenomena. Bol. Soc. Bras. Mat. 29(2), 253–293 (1998)

    Article  Google Scholar 

  7. Cheng, Ch.-Q.: Birkhoff-Kolmogorov-Arnold-Moser tori in convex Hamiltonian systems. Commun. Math. Phys. 177(3), 529–559 (1996)

    Article  Google Scholar 

  8. Cheng, Ch.-Q.: Lower-dimensional invariant tori in the regions of instability for nearly integrable Hamiltonian systems. Commun. Math. Phys. 203(2), 385–419 (1999)

    Article  Google Scholar 

  9. Chierchia, L.: Quasi-periodic Schrödinger operators in one dimension, absolutely continuous spectra, Bloch waves and integrable Hamiltonian systems. Firenze: Quaderni del Consiglio Nazionale delle Ricerche, 1986

  10. Chierchia, L.: Absolutely continuous spectra of quasi-periodic Schrödinger operators. J. Math. Phys. 28(12), 2891–2898 (1987)

    Article  Google Scholar 

  11. Dinaburg, E.I., Sinai, Ja.G.: The one-dimensional Schrödinger equation with quasiperiodic potential. Funk. Anal. i Pril. 9(4), 8–21 (1975)

    Google Scholar 

  12. Eliasson, L.H.: Floquet solutions for the 1-dimensional quasi-periodic Schrödinger equation. Commun. Math. Phys. 146(3), 447–482 (1992)

    Google Scholar 

  13. Gallavotti, G., Gentile, G.: Hyperbolic low-dimensional invariant tori and summations of divergent series. Commun. Math. Phys. 227(3), 421–460 (2002)

    Article  Google Scholar 

  14. Gentile, G.: Quasi-periodic solutions for two-level systems. Commun. Math. Phys. 242(1–2), 221–250 (2002)

    Google Scholar 

  15. Gentile, G., Gallavotti, G.: Degenerate elliptic resonances. Commun. Math. Phys. 257(2), 319–362 (2005)

    Article  Google Scholar 

  16. Gentile, G., Mastropietro, V.: Methods for the analysis of the Lindstedt series for KAM tori and renormalizability in classical mechanics. A review with some applications. Rev. Math. Phys. 8(3), 393–444 (1996)

    Google Scholar 

  17. Herman, M.: In: Some open problems in dynamical systems. In: Proceedings of the International Congress of Mathematicians, Vol. II (Berlin, 1998), Doc. Math. Extra Vol. II, 797–808 (1998)

  18. Hinton, D.B., Shaw, J.K.: On the absolutely continuous spectrum of the perturbed Hill's equation. Proc. London Math. Soc. 50(3), no. 1, 175–192 (1985)

    Google Scholar 

  19. Johnson, R., Moser, J.: The rotation number for almost periodic potentials. Commun. Math. Phys. 84(3), 403–438 (1982)

    Article  Google Scholar 

  20. Katznelson, Y.: An Introduction to harmonic analysis, Dover, New York, 1978

  21. Krikorian, R.: Réductibilité presque partout des flots fibrés quasi-périodiques à valeurs dans des groupes compacts. Ann. Sci. École Norm. Sup. (4) 32(2), 187–240 (1999)

    Google Scholar 

  22. Krikorian, R.: Rèductibilité des systèmes produits-croisés à valeurs dans des groupes compacts. Astérisque 259, vi+216 pp (1999)

  23. Krikorian, R.: Global density of reducible quasi-periodic cocycles on T1× SU(2). Ann. of Math. (2) 154(2), 269–326 (2001)

    Google Scholar 

  24. Magnus, W., Winkler, S.: Hill's Equation. New York, Dover, 1979

  25. Moser, J., Pöschel, J.: An extension of a result by Dinaburg and Sinaii on quasiperiodic potentials. Comment. Math. Helv. 59(1), 39–85 (1984)

    Google Scholar 

  26. Rofe-Beketov, F.S.: A finiteness test for the number of discrete levels which can be introduced into the gaps of the continuous spectrum by perturbations of a periodic potential (in Russian). Dokl. Akad. Nauk SSSR 156, 515–518 (1964)

    Google Scholar 

  27. Rüssmann, H.: On the one-dimensional Schrödinger equation with a quasiperiodic potential. In: Nonlinear dynamics (Internat. Conf., New York, 1979), Ann. New York Acad. Sci. 357, New York: New York Acad. Sci., 1980

  28. Rüssmann, H.: Stability of elliptic fixed points of analytic area-preserving mappings under the Bruno condition. Ergodic Theory Dynam. Systems 22(5), 1551–1573 (2002)

    Article  Google Scholar 

  29. Sorets, E., Spencer, T.: Positive Lyapunov exponents for Schrödinger operators with quasi-periodic potentials. Commun. Math. Phys. 142(3), 543–566 (1991)

    Article  Google Scholar 

  30. Szebehely, V.G.: Theory of orbits. New York: Academic Press, 1967

  31. Želudev, V.A.: The eigenvalues of a perturbed Schrödinger operator with periodic potential (in Russian). Problems of Mathematical Physics, no. 2, Spectral Theory, Diffraction Problems, Leningrad: Izdat. Leningrad. Univ., 1967, pp. 108–123

  32. Želudev, V.A.: The perturbation of the spectrum of the one-dimensional selfadjoint Schrödinger operator with periodic potential (in Russian), Problems of Mathematical Physics, no. 4, Spectral Theory. Wave Processes, Leningrad: Izdat. Leningrad. Univ., 1970, pp. 61–82

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João C. A. Barata.

Additional information

Communicated by G. Gallavotti

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gentile, G., Cortez, D. & Barata, J. Stability for Quasi-Periodically Perturbed Hill's Equations. Commun. Math. Phys. 260, 403–443 (2005). https://doi.org/10.1007/s00220-005-1413-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-005-1413-7

Keywords

Navigation