Communications in Mathematical Physics

, Volume 256, Issue 3, pp 539–564 | Cite as

The Volume of the Moduli Space of Flat Connections on a Nonorientable 2-Manifold

  • Nan-Kuo HoEmail author
  • Lisa C. Jeffrey


We compute the Riemannian volume of the moduli space of flat connections on a nonorientable 2-manifold, for a natural class of metrics. We also show that Witten’s volume formula for these moduli spaces may be derived using Haar measure, and we give a new proof of Witten’s volume formula for the moduli space of flat connections on a 2-manifold using Haar measure.


Neural Network Statistical Physic Complex System Nonlinear Dynamics Modulus Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alekseev, A., Malkin, A., Meinrenken, E.: Lie group valued moment maps. J. Differ. Geom. 48, 445–495 (1998)Google Scholar
  2. 2.
    Alekseev, A., Meinrenken, E., Woodward, C.: Duistermaat-Heckman measures and moduli spaces of flat bundles over surfaces. Geom. Funct. Anal. 12(1), 1–31 (2002)Google Scholar
  3. 3.
    Atiyah, M.F., Bott, R.: The Yang-Mills equations over Riemann surfaces. Philos. Trans. Roy. Soc. London Ser. A 308(1505), 523–615 (1983)Google Scholar
  4. 4.
    Atiyah, M.F., Bott, R.: The moment map and equivariant cohomology. Topology 23(1), 1–28 (1984)Google Scholar
  5. 5.
    Becker, C., Sengupta, A.: Sewing Yang-Mills measures and moduli spaces over compact surfaces. J. Funct. Anal. 52, 74–99 (1998)Google Scholar
  6. 6.
    Berline, N., Getzler, E., Vergne, M.: Heat Kernels and Dirac Operators. New-York: Springer-Verlag, 1992Google Scholar
  7. 7.
    Bröcker, T., tom Dieck, T.: Representations of Compact Lie Groups. Graduate Texts in Mathematics 98. New York: Springer-Verlag, 1985Google Scholar
  8. 8.
    Buser, P.: Geometry and Spectra of Compact Riemann Surfaces. Progress in Math, Vol. 106, Boston-Basel: Birkhäuser, 1992Google Scholar
  9. 9.
    Coxeter, H.S.M.: Introduction to Geometry. New York: Wiley, 1989Google Scholar
  10. 10.
    do Carmo, M.: Differential Geometry of Curves and Surfaces. New York: Prentice-Hall, 1976Google Scholar
  11. 11.
    d’Hoker, E.: String Theory. In : Quantum Fields and Strings: A Course for Mathematicians, P. Deligne et al. (ed.), Vol. 2, Providence, RI: AMS, 1999, pp. 807–1012Google Scholar
  12. 12.
    Fine, D.: Quantum Yang-Mills on the two-sphere. Commun. Math. Phys. 134, 273–292 (1990)Google Scholar
  13. 13.
    Forman, R.: Small volume limits of 2-d Yang-Mills. Commun. Math. Phys. 151, 39–52 (1993)Google Scholar
  14. 14.
    Freed, D.: Reidemeister torsion, spectral sequences, and Brieskorn spheres. J. Reine Angew. Math. 429, 75–89 (1992)Google Scholar
  15. 15.
    Goldman, W.M.: The symplectic nature of fundamental groups of surfaces. Adv. Math. 54, 200-225 (1984)Google Scholar
  16. 16.
    Goldman, W.M., Millson, J.J.: The deformation theory of representations of fundamental groups of compact Kähler manifolds. Bull. Am. Math. Soc. (N.S.) 18(2), 153–158 (1988)Google Scholar
  17. 17.
    Liu, K.: Heat kernel and moduli space. Math. Res. Lett. 3, 743–762 (1996)Google Scholar
  18. 18.
    Massey, W.S.: Algebraic Topology: An Introduction. Graduate Texts in Mathematics 56. New York: Springer-Verlag, 1967Google Scholar
  19. 19.
    Migdal, A.A.: Recursion equations in gauge field theories. Sov. Phys. JETP 42, 413–418 (1976)Google Scholar
  20. 20.
    Sengupta, A.: Yang-Mills on surfaces with boundary: quantum theory and symplectic limit. Commun. Math. Phys. 183, 661–705 (1997)Google Scholar
  21. 21.
    Sengupta, A.: Sewing symplectic volumes for flat connections over compact surfaces. J. Geom. Phys. 32, 269–292 (2000)Google Scholar
  22. 22.
    Sengupta, A.: The Yang-Mills measure and symplectic structure over spaces of connections. In: Quantization of singular symplectic quotients, Progress in Mathematics Vol. 198, Bosol-Boston: Birkhäuser, 2001, pp. 329–355Google Scholar
  23. 23.
    Eric W. Weisstein.: Spherical trigonometry. From MathWorld– A Wolfram Web Resource,
  24. 24.
    Witten, E.: On quantum gauge theories in two dimensions. Commun. Math. Phys. 141, 153–209 (1991)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  1. 1.Department of MathematicsNational Cheng-Kung UniversityTaiwan, R.O.C
  2. 2.Department of MathematicsUniversity of TorontoTorontoCanada

Personalised recommendations