Skip to main content
Log in

Dynamics and Universality of Unimodal Mappings with Infinite Criticality

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider infinitely renormalizable unimodal mappings with topological type which are periodic under renormalization. We study the limiting behavior of fixed points of the renormalization operator as the order of the critical point increases to infinity. It is shown that a limiting dynamics exists, with a critical point that is flat, but still having a well-behaved analytic continuation to a neighborhood of the real interval pinched at the critical point. We study the dynamics of limiting maps and prove their rigidity. In particular, the sequence of fixed points of renormalization for finite criticalities converges, uniformly on the real domain, to a mapping of the limiting type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Briggs, KM., Dixon, T., Szekeres, G.: Analytic solutions of the Cvitanović-Feigenbaum and Feigenbaum-Kadanoff-Shenker equations. Int. J. Bifur. Chaos Appl. Sci. Engr. 8, 347–357 (1998)

    Google Scholar 

  2. Bruin H., Keller, G., Nowicki, T., Van Strien, S.: Wild Cantor attractors exist. Ann. Math. 143, 97–130 (1996)

    Google Scholar 

  3. Baker, IN., Domingues, P., Herring, ME.: Dynamics of functions meromorphic outside a small set. Ergod.Th.Dynam.Sys. 21, 647–672 (2001)

    Google Scholar 

  4. Baker, IN., Kotus, J., Lu, Y.: Iterates of meromorphic functions IV: Critically finite functions. Results Math. 22, 651–656 (1992)

    Google Scholar 

  5. Campanino, M., Epstein, H.: On the existence of Feigenbaum’s fixed point. Commun. Math. Phys. 79, 261–302 (1981)

    Google Scholar 

  6. Carleson, L., Gamelin, T.: Complex dynamics. New York: Springer-Verlag, 1993

  7. Coullet, P., Tresser, C.: Iteration d’endomorphismes et groupe de renormalisation. J. Phys. C5, 25–28 (1978)

    Google Scholar 

  8. Collet, P., Eckmann, J-P.: Iterated maps on the interval as dynamical systems. Progress in Physics, Boston: Birkhauser, 1980

  9. De Melo, W., Van Strien, S.: One-dimensional dynamics. Ergebnisse Series 25, Berlin-Heidelberg-New York: Springer-Verlag, 1993

  10. Douady, A., Hubbard, JH.: On the dynamics of polynomial-like mappings. Ann. Sci. École Norm. Sup. (Paris) 18 287–343 (1985)

    Google Scholar 

  11. Eckmann, J-P., Wittwer, P.: Computer Methods and Borel Summability Applied to Feigenbaum’s equation. Lecture Notes in Physics 227, Berlin-Heidelberg-New York: Springer-Verlag, 1985

  12. Epstein, H., Lascoux, J.: Analyticity properties of the Feigenbaum function. Commun. Math. Phys. 81, 437–453 (1981)

    Google Scholar 

  13. Eremenko, A., Lyubich, M.: Dynamical properties of some classes of entire functions. Ann. Inst. Fourier, Grenoble 42, 989–1020 (1992)

    Google Scholar 

  14. Feigenbaum, M.: Qualitative universality for a class of non-linear transformations. J. Stat. Phys. 19, 25–52 (1978)

    Google Scholar 

  15. Feigenbaum, M.: The universal metric properties of non-linear transformations. J. Stat. Phys. 21, 669–706 (1979)

    Google Scholar 

  16. Jakobson, M., Światek, G.: Metric properties of non-renormalizable S-unimodal maps: II. Quasisymmetric conjugacy classes. Erg. Th. Dyn. Sys. 15, (1995) 871–938

    Google Scholar 

  17. Lanford, O.: Remarks on the accumulation of period-doubling bifurcations. Lect. Notes in Phys. 116, Berlin-New York: Springer-Verlag, 1980, pp. 340–342

  18. Lanford, O.: A computer-assisted proof of the Feigenbaum conjectures. Bull. Amer. Math. Soc., New Series, 6, (1984) 127

    Google Scholar 

  19. Ledrappier, F., Misiurewicz, M.: Dimension of invariant measures for maps with exponent zero. Ergod. Th. & Dynam. Sys. 5, 595–610 (1985)

    Google Scholar 

  20. Levin, G., Van Strien, S.: Local connectivity of the Julia set of real polynomials. Ann. Math. 147, 471–541 (1998)

    Google Scholar 

  21. Lyubich, M.: Feigenbaum-Coullet-Tresser universality and Milnor’s hairiness conjecture. Ann. Math. 149, 319–420 (1999)

    Google Scholar 

  22. Mc Mullen, C.: Complex dynamics and renormalization. Ann. of Math. Studies 135, Princeton, NJ: Princeton University Press, 1994

  23. Mc Mullen, C.: Renormalization and 3-manifolds which fiber over the circle. Ann. of Math. Studies 142, Princeton, NJ: Princeton University Press, 1998

  24. Mc Mullen, C.: Rigidity and inflexibility in conformal dynamics. Volume ICM 1998, Doc. Math. J. DMV, 16 pp.

  25. Sullivan, D.: Bounds, quadratic differentials and renormalization conjectures. In: Mathematics into the Twenty-First Century, AMS Centennial Publications, Providence, RI: Amer. Math. Soc., 1991

  26. Sullivan, D.: Quasiconformal homeomorphisms and dynamics I: a solution of Fatou-Julia problem on wandering domains. Ann. Math. 122, 401–418 (1985)

    Google Scholar 

  27. Thompson, CJ., McGuire, JB.: Asymptotic and essentially singular solutions of the Feigenbaum equation. Jour. Stat. Physics 51, (1988) 991–1007

    Google Scholar 

  28. Van Der Weele, JP., Capel, HW., Kluiving, R.: Period doubling in maps with a maximum order of 2. Physica 145A, (1987) 425–460

  29. Van Strien, S., Nowicki, T.: Polynomial maps with a Julia set of positive Lebesgue measure: Fibonacci maps. Manuscript 1994, Stony Brook Preprint 94–3

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Genadi Levin.

Additional information

Communicated by G. Gallavotti

Both authors were supported by Grant No. 2002062 from the United States-Israel Binational Science Foundation (BSF), Jerusalem, Israel.

Partially supported by NSF grant DMS-0245358.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Levin, G., Światek, G. Dynamics and Universality of Unimodal Mappings with Infinite Criticality. Commun. Math. Phys. 258, 103–133 (2005). https://doi.org/10.1007/s00220-005-1333-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-005-1333-6

Keywords

Navigation