Skip to main content
Log in

Homogenization of the Schrödinger Equation and Effective Mass Theorems

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We study the homogenization of a Schrödinger equation with a large periodic potential: denoting by the period, the potential is scaled as −2. We obtain a rigorous derivation of so-called effective mass theorems in solid state physics. More precisely, for well-prepared initial data concentrating on a Bloch eigenfunction we prove that the solution is approximately the product of a fast oscillating Bloch eigenfunction and of a slowly varying solution of an homogenized Schrödinger equation. The homogenized coefficients depend on the chosen Bloch eigenvalue, and the homogenized solution may experience a large drift. The homogenized limit may be a system of equations having dimension equal to the multiplicity of the Bloch eigenvalue. Our method is based on a combination of classical homogenization techniques (two-scale convergence and suitable oscillating test functions) and of Bloch waves decomposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albert, J.H.: Genericity of simple eigenvalues for elliptics pde’s. Proc. A.M.S. 48, 413–418 (1975)

    Google Scholar 

  2. Allaire, G.: Homogenization and two-scale convergence. SIAM J. Math. Anal. 23(6), 1482–1518 (1992)

    Google Scholar 

  3. Allaire, G., Capdeboscq, Y., Piatnitski, A., Siess, V., Vanninathan, M.: Homogenization of periodic systems with large potentials. Arch. Rat. Mech. Anal. 174, 179–220 (2004)

    MathSciNet  Google Scholar 

  4. Allaire, G., Conca, C.: Bloch wave homogenization and spectral asymptotic analysis. J. Math. Pures et Appli. 77, 153–208 (1998)

    Google Scholar 

  5. Allaire, G., Malige, F.: Analyse asymptotique spectrale d’un problème de diffusion neutronique. C. R. Acad. Sci. Paris Série I, t 324, 939–944 (1997)

    Google Scholar 

  6. Bensoussan, A., Lions, J.-L., Papanicolaou, G.: Asymptotic analysis for periodic structures. Amsterdam: North-Holland, 1978

  7. Brézis, H.: Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert. Amsterdam: North-Holland, 1973

  8. Cazenave, Th., Haraux, A.: Introduction aux problèmes d’évolution semi-linéaires. Mathématiques et applications, Paris: Ellipses, 1990

  9. Conca, C., Orive, R., Vanninathan, M.: Bloch approximation in homogenization and applications. SIAM J. Math. Anal. 33, 1166–1198 (2002)

    Google Scholar 

  10. Conca, C., Planchard, J., Vanninathan, M.: Fluids and periodic structures. RMA 38, Paris: J. Wiley & Masson, 1995

  11. Conca, C., Vanninathan, M.: Homogenization of periodic structures via Bloch decomposition. SIAM J. Appl. Math. 57, 1639–1659 (1997)

    Article  Google Scholar 

  12. Dimassi, M., Guillot, J.-C., Ralston, J.: Semiclassical asymptotics in magnetic Bloch bands. J. Phys. A 35(35), 7597–7605 (2002)

    Google Scholar 

  13. Fermanian-Kammerer, C., Gérard, P.: Mesures semi-classiques et croisement de modes. Bull. Soc. Math. France 130, 123–168 (2002)

    Google Scholar 

  14. Fermanian-Kammerer, C., Gérard, P.: A Landau-Zener formula for non-degenerated involutive codimension 3 crossings. Ann. Henri Poincaré 4, 513–552 (2003)

    Google Scholar 

  15. Gérard, P.: Mesures semi-classiques et ondes de Bloch. In: Séminaire sur les équations aux Dérivées Partielles, 1990–1991, Exp. No. XVI, 19 pp., Palaiseau: École Polytech., 1991

  16. Gérard, P., Markowich, P., Mauser, N., Poupaud, F.: Homogenization limits and Wigner transforms. Commun. Pure Appl. Math. 50(4), 323–379 (1997)

    Google Scholar 

  17. Gérard, C., Martinez, A., Sjöstrand, J.: A mathematical approach to the effective Hamiltonian in perturbed periodic problems. Commun. Math. Phys. 142(2), 217–244 (1991)

    Google Scholar 

  18. Jikov, V. V., Kozlov, S. M., Oleinik, O. A.: Homogenization of Differential Operators and Integral Functionals. Berlin-Heidelberg-New York: Springer Verlag, 1994

  19. Kato, T.: Perturbation theory for linear operators. Berlin: Springer-Verlag, 1966

  20. Kittel, Ch.: Introduction to solid state physics. New York: John Wiley, 1996

  21. Kozlov, S.: Reducibility of quasiperiodic differential operators and averaging. Transc. Moscow Math. Soc. Issue 2, 101–126 (1984)

    Google Scholar 

  22. Magnus, W., Winkler, S.: Hill’s equation. Interscience Tracts in Pure and Applied Mathematics, No. 20, New York-London-Sydney: Interscience Publishers John Wiley & Sons, 1966

  23. Marusic-Paloka, E., Piatnitski, A.: Homogenization of nonlinear convection-diffusion equation with rapidly oscillating coefficients and strong convection. IWR, University of Heidelberg, Preprint N2002-17, 2002, http://www.iwr.uni-heidelberg.delsfb/preprints2002.html

  24. Murat, F., Tartar, L.: H-convergence. Séminaire d’Analyse Fonctionnelle et Numérique de l’Université d’Alger, mimeographed notes (1978). English translation in Topics in the mathematical modelling of composite materials, Cherkaev, A., Kohn, R. (eds.), Progress in Nonlinear Differential Equations and their Applications 31, Boston: Birkhaüser, 1997

  25. Myers, H.P.: Introductory solid state physics. London: Taylor & Francis, 1990

  26. Nguetseng, G.: A general convergence result for a functional related to the theory of homogenization. SIAM J. Math. Anal. 20(3), 608–623 (1989)

    Google Scholar 

  27. Panati, G., Sohn, H., Teufel, S.: Effective dynamics for Bloch electrons: Peierls substitution and beyond. Commun. Math. Phys. 242, 547–578 (2003)

    Google Scholar 

  28. Pedersen, F.: Simple derivation of the effective-mass equation using a multiple-scale technique. Eur. J. Phys. 18, 43–45 (1997)

    Google Scholar 

  29. Poupaud, F., Ringhofer, C.: Semi-classical limits in a crystal with exterior potentials and effective mass theorems. Commun. Partial Differ. Eqs. 21(11–12), 1897–1918 (1996)

    Google Scholar 

  30. Quéré, Y.: Physique des matériaux. Paris: Ellipses, 1988

  31. Reed, M., Simon, B.: Methods of modern mathematical physics. New York: Academic Press, 1978

  32. Spagnolo, S.: Convergence in energy for elliptic operators. In: Numerical solutions of partial differential equations III Synspade 1975, Hubbard, B. (ed.), New York: Academic Press, 1976

  33. Vanninathan, M.: Homogenization of eigenvalue problems in perforated domains. Proc. Indian Acad. Sci. Math. Sci. 90, 239–271 (1981)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grégoire Allaire.

Additional information

Communicated by B. Simon

Rights and permissions

Reprints and permissions

About this article

Cite this article

Allaire, G., Piatnitski, A. Homogenization of the Schrödinger Equation and Effective Mass Theorems. Commun. Math. Phys. 258, 1–22 (2005). https://doi.org/10.1007/s00220-005-1329-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-005-1329-2

Keywords

Navigation