Skip to main content
Log in

Zero Debye Length Asymptotic of the Quantum Hydrodynamic Model for Semiconductors

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

In the present paper we consider the zero Debye length asymptotic of solutions of isentropic quantum hydrodynamic equations for semiconductors at nano-size and show that the current density consists of the divergence free vector field involved in the incompressible Euler equation and highly oscillating gradient vector field caused by the highly electric fields for small Debye length. This means that the quantum effects possibly may not dominate the charge transport within the channel of semiconductor devices (for instance MOSFET) of nano-size for isentropic quantum fluids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ancona, M. G., Tiersten, H. F.: Microscopic physics of the Silicon inversion layer. Phys. Rev. B 35, 7959–7965 (1987)

    Google Scholar 

  2. Ancona, M. G., Iafrate, G. I.: Quantum correction to the equation of state of an electron gas in a semiconductor. Phys. Rev. B 39, 9536–9540 (1989)

    Google Scholar 

  3. Brenier, Y.: Convergence of the Vlasov-Poisson system to the incompressible Euler equations. Comm. Partial Diff. Eqs. 25, 737–754 (2000)

    Google Scholar 

  4. Beale, T., Kato, T., Majda, A.: Remarks on the breakdown of smooth solutions for the 3D Euler equations. Commun. Math. Phys. 94, 61–66 (1984)

    Google Scholar 

  5. Brezzi, F., Gasser, I., Markowich, P., Schmeiser, C.: Thermal equilibrium state of the quantum hydrodynamic model for semiconductor in one dimension. Appl. Math. Lett. 8, 47–52 (1995)

    Google Scholar 

  6. Bohm, D.: A suggested interpretation of the quantum theory in terms of “hidden” valuables: I; II. Phys. Rev. 85, 166–179, 180–193 (1952)

    Google Scholar 

  7. Desjardins, B., Lin, C.-K., Tso, T.-C.: Semiclassical limit of the derivative nonlinear Schrödinger equation. Math. Models Methods Appl. Sci. 10, 261–285 (2000)

    Google Scholar 

  8. Desjardins, B., Lin, C.-K.: On the semiclassical limit of the general modified NLS equation. J. Math. Anal. Appl. 260, 546–571 (2001)

    Google Scholar 

  9. Ferry, D. K., Zhou, J.-R.: Form of the quantum potential for use in hydrodynamic equations for semiconductor device modeling. Phys. Rev. B 48, 7944–7950 (1993)

    Google Scholar 

  10. Gardner, C.: The quantum hydrodynamic model for semiconductors devices. SIAM J. Appl. Math. 54, 409–427 (1994)

    Google Scholar 

  11. Gasser, I., Markowich, P.: Quantum hydrodynamics, Wigner transforms and the classical limit. Asymptotic Anal. 14 , 97–116 (1997)

    Google Scholar 

  12. Gasser, I., Markowich, P. A., Ringhofer, C.: Closure conditions for classical and quantum moment hierarchies in the small temperature limit. Transp. Theory Stat. Phys. 25, 409–423 (1996)

    Google Scholar 

  13. Grenier, E., Masmoudi, N.: Ekman layers of rotating fluids, the case of well prepared initial data. Commun. Partial Diff. Eqs. 22, 953–975 (1997)

    Google Scholar 

  14. Jüngel, A.: Quasi-hydrodynamic semiconductor equations, Progress in Nonlinear Differential Equations. Basel: Birkhäuser, 2001

  15. Jüngel, A.: A steady-state potential flow Euler-Poisson system for charged quantum fluids. Commun. Math. Phys. 194, 463–479 (1998)

    Google Scholar 

  16. Jüngel, A., Li, H.-L., Matsumura, A.: Global relaxation asymptotic from quantum hydrodynamics model to quantum drift-diffusion equations in3. Preprint 2003

  17. Klusdahl, N., Kriman, A., Ferry, D., Ringhofer, C.: Self-consistent study of the resonant-tunneling diode. Phys. Rev. B 39, 7720–7735 (1989)

    Google Scholar 

  18. Li, H.-L., Lin, C.-K., Masmoudi, N.: Incompressible limit of the nonisentropic Euler-Poisson system for general initial data. Preprint 2003

  19. Li, H.-L., Marcati, P.: Existence and asymptotic behavior of multi-dimensional quantum hydrodynamic model for semiconductors. Commun. Math. Phys. 245(2), 215–247 (2004)

    Google Scholar 

  20. Lions, P.-L.: Mathematical topics in fluid mechanics, Vol. 1. Incompressible models, New York: The Clarendon Press, Oxford University Press, 1996

  21. Madelung, E.: Quantentheorie in hydrodynamischer form. Z. Physik 40, 322 (1927)

    Google Scholar 

  22. Markowich, P. A., Ringhofer, C., Schmeiser, C.: Semiconductor Equations. Berlin-Heidelberg-New York: Springer-Verlag, 1989

  23. Masmoudi, N.: From Vlasov-Poisson system to the incompressible Euler system. Commun. Partial Diff. Eqs. 26, 1913–1928 (2001)

    Google Scholar 

  24. Masmoudi, N.: Ekman layers of rotating fluids: the case of general initial data. Commun. Pure Appl. Math. LIII, 0432–0483 (2000)

    Google Scholar 

  25. Schochet, S.: Fast singular limits of hyperbolic PDEs. J. Diff. Eqs. 114, 476–512 (1994)

    Google Scholar 

  26. Simon, J.: Compact sets in the space Lp(0,T;B). Ann. Math. Pura. Appl. 146, 65–96 (1987)

    Google Scholar 

  27. Sze, S. M.: Physics of semiconductor devices. New York: John Wiley & Sons, 1969

  28. Wigner, E.: On the quantum correction for thermodynamic equilibrium. Phys. Rev. 40, 749–759 (1932)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chi-Kun Lin.

Additional information

Communicated by H.-T. Yau

Dedicated to Professor Tai-Ping Liu on his sixtieth birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, HL., Lin, CK. Zero Debye Length Asymptotic of the Quantum Hydrodynamic Model for Semiconductors. Commun. Math. Phys. 256, 195–212 (2005). https://doi.org/10.1007/s00220-005-1316-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-005-1316-7

Keywords

Navigation