Skip to main content
Log in

Conformal Orbifold Theories and Braided Crossed G-Categories

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

An Erratum to this article was published on 11 October 2005

Abstract

The aim of the paper is twofold. First, we show that a quantum field theory A living on the line and having a group G of inner symmetries gives rise to a category G–Loc A of twisted representations. This category is a braided crossed G-category in the sense of Turaev [60]. Its degree zero subcategory is braided and equivalent to the usual representation category Rep A. Combining this with [29], where Rep A was proven to be modular for a nice class of rational conformal models, and with the construction of invariants of G-manifolds in [60], we obtain an equivariant version of the following chain of constructions: Rational CFT modular category 3-manifold invariant.

Secondly, we study the relation between G–Loc A and the braided (in the usual sense) representation category Rep AG of the orbifold theory AG. We prove the equivalence RepAG≃(G–Loc A)G, which is a rigorous implementation of the insight that one needs to take the twisted representations of A into account in order to determine Rep AG. In the opposite direction we have is the full subcategory of representations of AG contained in the vacuum representation of A, and ⋊ refers to the Galois extensions of braided tensor categories of [44, 48].

Under the assumptions that A is completely rational and G is finite we prove that A has g-twisted representations for every gG and that the sum over the squared dimensions of the simple g-twisted representations for fixed g equals dim Rep A. In the holomorphic case this allows to classify the possible categories G− Loc A and to clarify the rôle of the twisted quantum doubles Dω(G) in this context, as will be done in a sequel. We conclude with some remarks on non-holomorphic orbifolds and surprising counterexamples concerning permutation orbifolds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bantay, P.: Characters and modular properties of permutation orbifolds. Phys. Lett. B419, 175–178 (1998); Permutation orbifolds. Nucl. Phys. B633, 365–378 (2002)

    Google Scholar 

  2. Bantay, P.: The kernel of the modular representation and the Galois action in RCFT. Commun. Math. Phys. 233, 423–438 (2003)

    Google Scholar 

  3. Barrett, J.W., Westbury, B.W.: Spherical categories. Adv. Math. 143, 357–375 (1999)

    Article  Google Scholar 

  4. Böckenhauer, J., Evans, D.E.: Modular invariants, graphs and α-induction for nets of subfactors I. Commun. Math. Phys. 197, 361–386 (1998)

    Article  Google Scholar 

  5. Bruguières, A.: Catégories prémodulaires, modularisations et invariants de variétés de dimension 3. Math. Ann. 316, 215–236 (2000)

    Article  Google Scholar 

  6. Brunetti, R., Guido, D., Longo, R.: Modular structure and duality in QFT. Commun. Math. Phys. 156, 201–219 (1993)

    Google Scholar 

  7. Carrasco, P., Moreno, J.M.: Categorical G-crossed modules and 2-fold extensions. J. Pure Appl. Alg. 163, 235–257 (2001)

    Article  Google Scholar 

  8. Conti, R., Doplicher, S., Roberts, J.E.: On subsystems and their sectors. Commun. Math. Phys. 218, 263–281 (2001)

    Article  Google Scholar 

  9. Deligne, P.: Catégories tannakiennes. In: Grothendieck Festschrift, P. Cartier et al. (eds.), Vol. II, Basel-Boston: Birkhäuser Verlag, 1991, pp. 111–195

  10. Dijkgraaf, R., Pasquier, V., Roche, P.: Quasi Hopf algebras, group cohomology and orbifold models. Nucl. Phys. B (Proc. Suppl.)18B, 60–72 (1990)

  11. Dijkgraaf, R., Vafa, C., Verlinde, E., Verlinde, H.: The operator algebra of orbifold models. Commun. Math. Phys. 123, 485–527 (1989)

    Article  Google Scholar 

  12. Dijkgraaf, R., Witten, E.: Topological gauge theories and group cohomology. Commun. Math. Phys. 129, 393–429 (1990)

    Article  Google Scholar 

  13. Dong, C., Li, H., Mason, G.: Twisted representations of vertex operator algebras. Math. Ann. 310, 571–600 (1998)

    Article  Google Scholar 

  14. Dong, C., Yamskulna, G.: Vertex operator algebras, generalized doubles and dual pairs. Math. Z. 241, 397–423 (2002)

    Article  Google Scholar 

  15. Doplicher, S., Haag, R., Roberts, J.E.: Fields, observables and gauge transformations I. Commun. Math. Phys. 13, 1–23 (1969)

    Article  Google Scholar 

  16. Doplicher, S., Haag, R., Roberts, J.E.: Local observables and particle statistics I & II. Commun. Math. Phys. 23, 199–230 (1971); 35, 49–85 (1974)

    Article  Google Scholar 

  17. Doplicher, S., Roberts, J.E.: Endomorphisms of C*-algebras, cross products and duality for compact groups. Ann. Math. 130, 75–119 (1989)

    Google Scholar 

  18. Doplicher, S., Roberts, J.E.: A new duality theory for compact groups. Invent. Math. 98, 157–218 (1989)

    Article  Google Scholar 

  19. Doplicher, S., Roberts, J.E.: Why there is a field algebra with a compact gauge group describing the superselection structure in particle physics. Commun. Math. Phys. 131, 51–107 (1990)

    Article  Google Scholar 

  20. Fredenhagen, K., Rehren, K.-H., Schroer, B.: Superselection sectors with braid group statistics and exchange algebras I. General theory. Commun. Math. Phys. 125, 201–226 (1989)

    Google Scholar 

  21. Fredenhagen, K., Rehren, K.-H., Schroer, B.: Superselection sectors with braid group statistics and exchange algebras II. Geometric aspects and conformal covariance. Rev. Math. Phys. Special Issue, 113–157 (1992)

  22. Gabbiani, F., Fröhlich, J.: Operator algebras and conformal field theory. Commun. Math. Phys. 155, 569–640 (1993)

    Article  Google Scholar 

  23. Guido, D., Longo, R.: Relativistic invariance and charge conjugation in quantum field theory. Commun. Math. Phys. 148, 521–551 (1992)

    Google Scholar 

  24. Haag, R.: Local Quantum Physics. 2nd ed. Springer Texts and Monographs in Physics, Berlin-Heidelberg-New York: Springer, 1996

  25. Joyal, A., Street, R.: Braided tensor categories. Adv. Math. 102, 20–78 (1993)

    Article  Google Scholar 

  26. Kac, V.: Vertex algebras for beginners. AMS University Lecture Series, Vol. 10, Providence, RI: AMS 1997

  27. Kac, V., Longo, R., Xu, F.: Solitons in affine and permutation orbifolds. Commun. Math. Phys. 253, 723–764 (2005)

    Article  Google Scholar 

  28. Kadison, R.V., Ringrose, J.R.: Fundamentals of the theory of operator algebras II. New York: Academic Press, 1986

  29. Kawahigashi, Y., Longo, R., Müger, M.: Multi-interval subfactors and modularity of representations in conformal field theory. Commun. Math. Phys. 219, 631–669 (2001)

    Google Scholar 

  30. Kirillov Jr., A.: Modular categories and orbifold models I & II. Commun. Math. Phys. 229, 309–335 (2002), http://arxiv.org/abs/math.QA/0110221, 2001

    Article  Google Scholar 

  31. Kirillov Jr., A.: On G-equivariant modular categories. http://arxiv.org/abs/math.QA/0401119, 2004

  32. Kirillov Jr., A., Ostrik, V.: On q-analog of McKay correspondence and ADE classification of sl(2) conformal field theories. Adv. Math. 171, 183–227 (2002)

    Article  Google Scholar 

  33. Koornwinder, T.H., Muller, N.: The quantum double of a (locally) compact group. J. Lie Th. 7, 101–120 (1997)

    Google Scholar 

  34. Longo, R.: Index of subfactors and statistics of quantum fields I & II. Commun. Math. Phys. 126, 217–247 (1989); 130, 285–309 (1990)

    Article  Google Scholar 

  35. Longo, R., Rehren, K.-H.: Nets of subfactors. Rev. Math. Phys. 7, 567–597 (1995)

    Article  Google Scholar 

  36. Longo, R., Roberts, J.E.: A theory of dimension. K-Theory 11, 103–159 (1997)

    Article  Google Scholar 

  37. Longo, R., Xu, F.: Topological sectors and a dichotomy in conformal field theory. Commun. Math. Phy. 251, 321–364 (2004)

    Article  Google Scholar 

  38. Mac Lane, S.: Cohomology theory of abelian groups. Proceedings of the ICM 1950, (Cambridge, MA, 1950) Vol. II, Providence, RI: Am. Math. Soc., 1952, pp. 8–14

  39. Mac Lane, S.: Despite physicists, proof is essential in mathematics. Synthese 111, 147–154 (1997)

    Article  Google Scholar 

  40. Mac Lane, S.: Categories for the Working Mathematician. 2nd ed. Berlin-Heidelberg-New York: Springer-Verlag, 1998

  41. Moore, G., Seiberg, N.: Classical and quantum conformal field theory. Commun. Math. Phys. 123, 177–254 (1989)

    Article  Google Scholar 

  42. Müger, M.: On charged fields with group symmetry and degeneracies of Verlinde's matrix S. Ann. Inst. Henri Poincaré B (Phys. Théor.) 7, 359–394 (1999)

    Google Scholar 

  43. Müger, M.: On soliton automorphisms in massive and conformal theories. Rev. Math. Phys. 11, 337–359 (1999)

    Article  Google Scholar 

  44. Müger, M.: Galois theory for braided tensor categories and the modular closure. Adv. Math. 150, 151–201 (2000)

    Article  Google Scholar 

  45. Müger, M.: Conformal field theory and Doplicher-Roberts reconstruction. In: Mathematical Physics in Mathematics and Physics: Quantum and Operator Algebraic Aspects, R. Longo (ed.), Fields Inst. Commun. 20, 297–319 (2001)

    Google Scholar 

  46. Müger, M.: From subfactors to categories and topology I. Frobenius algebras in and Morita equivalence of tensor categories. J. Pure Appl. Alg. 180, 81–157 (2003)

    Google Scholar 

  47. Müger, M.: On the structure of modular categories. Proc. Lond. Math. Soc. 87, 291–308 (2003)

    Article  Google Scholar 

  48. Müger, M.: Galois extensions of braided tensor categories and braided crossed G-categories. J. Alg. 277, 256–281 (2004)

    Article  Google Scholar 

  49. Müger, M.: Group actions on braided tensor categories. In preparation

  50. Müger, M., Tuset, L.: Regular representations of algebraic quantum groups and embedding theorems. In preparation

  51. Ospel, L.: Tressages et théories cohomologiques pour les algèbres de Hopf. Application aux invariants des 3-variétés. Thèse, Univ. Strasbourg, 1999

  52. Pareigis, B.: On braiding and dyslexia. J. Algebra 171, 413–425 (1995)

    Article  Google Scholar 

  53. Rehren, K.-H.: Markov traces as characters for local algebras. Nucl. Phys. B(Proc. Suppl.)18B, 259–268 (1990)

  54. Rehren, K.-H.: Spin-statistics and CPT for solitons. Lett. Math. Phys. 46, 95–110 (1998)

    Article  Google Scholar 

  55. Roberts, J.E.: Net cohomology and its applications to field theory. In: Quantum fields, Particles, Processes, L. Streit (ed.), Berlin-Heidelberg-New York: Springer, 1980

  56. Saaveda Rivano, N.: Catégories Tannakiennes. LNM 265, Berlin-Heidelberg-New York: Springer-Verlag, 1972

  57. Sutherland, C.E.: Cohomology and extensions of von Neumann algebras I & II. Publ. RIMS (Kyoto) 16, 105–133, 135–174 (1980)

    Google Scholar 

  58. Tambara, D.: Invariants and semi-direct products for finite group actions on tensor categories. J. Math. Soc. Jap. 53, 429–456 (2001)

    Google Scholar 

  59. Turaev, V.G.: Quantum Invariants of Knots and 3-Manifolds. Berlin: Walter de Gruyter, 1994

  60. Turaev, V.G.: Homotopy field theory in dimension 3 and crossed group-categories. http://arxiv.org/ abs/math.GT/0005291, 2000

  61. Wassermann, A.: Operator algebras and conformal field theory III. Fusion of positive energy representations of SU(N) using bounded operators. Invent. Math. 133, 467–538 (1998)

    Google Scholar 

  62. Xu, F.: New braided endomorphisms from conformal inclusions. Commun. Math. Phys. 192, 349–403 (1998)

    Article  Google Scholar 

  63. Xu, F.: Jones-Wassermann subfactors for disconnected intervals. Commun. Contemp. Math. 2, 307–347 (2000)

    Google Scholar 

  64. Xu, F.: Algebraic orbifold conformal field theories. Proc. Natl. Acad. Sci. USA 97, 14069–14073 (2000)

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Müger.

Additional information

Communicated by Y. Kawahigashi

Supported by NWO through the “pioneer” project no. 616.062.384 of N. P. Landsman.

An erratum to this article can be found at http://dx.doi.org/10.1007/s00220-005-1422-6

Rights and permissions

Reprints and permissions

About this article

Cite this article

Müger, M. Conformal Orbifold Theories and Braided Crossed G-Categories. Commun. Math. Phys. 260, 727–762 (2005). https://doi.org/10.1007/s00220-005-1291-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-005-1291-z

Keywords

Navigation