Communications in Mathematical Physics

, Volume 256, Issue 3, pp 737–766 | Cite as

Onset of Chaotic Kolmogorov Flows Resulting from Interacting Oscillatory Modes

  • Zhi-Min Chen
  • W.G. Price


On the basis of rigorous analysis supported by numerical computation, a systematic study is presented to locate and examine chaotic Kolmogorov flows resulting from the interaction of a basic steady-state flow and oscillatory modes. Referenced to suitably chosen initial conditions of the Kolmogorov flow model, these oscillatory modes are derived from the equation linearized around the basic steady-state flow. The numerical experiments provide insight into the transition process from secondary self-oscillation flows or secondary steady-state flows to chaotic Kolmogorov flows.


Neural Network Statistical Physic Complex System Numerical Computation Numerical Experiment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arnold, V.I., Meshalkin, L.D.: Kolmogorov’s seminar on selected problems of analysis (1958–1959). Russ. Math. Surv. 15, 247–250 (1960)Google Scholar
  2. 2.
    Bondarenko, N.F., Gak, M.Z., Dolzhanskiy, F.V.: Laboratory and theoretical models of plane periodic flows. Bull. (Izv.) Acad. Sci. USSR, Atmospheric and Oceanic Physics 15, 711–716 (1979)Google Scholar
  3. 3.
    Beyer, P., Benkadda, S.: Advection of passive particles in the Kolmogorov flow. Chaos 11, 774–779 (2001)CrossRefPubMedGoogle Scholar
  4. 4.
    Chen, Z.-M.: Bifurcations of a steady-state solution to the two-dimensional Navier-Stokes equations. Commun. Math. Phys. 201, 117–138 (1999)CrossRefGoogle Scholar
  5. 5.
    Chen, Z.-M., Price, W.G.: Time-dependent periodic Navier-Stokes flow in a two-dimensional torus. Commun. Math. Phys. 179, 577–597 (1996)Google Scholar
  6. 6.
    Chen, Z.-M., Price, W.G.: Remarks on time dependent periodic Navier-Stokes flows on a the two-dimensional torus. Commun. Math. Phys. 207, 81–106 (1999)CrossRefGoogle Scholar
  7. 7.
    Chen, Z.-M., Price, W.G.: Circle bifurcation of a two-dimensional spatially periodic flow. To be publishedGoogle Scholar
  8. 8.
    Drazin, P.G., Reid, W.H.: Hydrodynamic Stability. Cambridge: Cambridge University Press, 1981Google Scholar
  9. 9.
    Foias, C., Jolly, M.S., Manley, O.P., Rosa, R.: On the Landau-Lifschitz degrees of freedom in 2-D turbulence. J. Stat. Phys. 111, 1017–1019 (2003)CrossRefGoogle Scholar
  10. 10.
    Foias, C., Jolly, M.S., Manley, O.P., Rosa, R.: Statistical estimates for the Navier-Stokes equations and the Kraichnan theory of 2-D fully developed turbulence. J. Stat. Phys. 108, 591–645 (2002)CrossRefGoogle Scholar
  11. 11.
    Foias, C., Manley, O., Rosa, R., Temam, R.: Navier-Stokes equations and turbulence. In: Encyclopedia of Mathematics and its Applications, Vol. 83. Cambridge: Cambridge University Press, 2001Google Scholar
  12. 12.
    Frenkel, A. L.: Stability of an oscillating Kolmogorov flow. Phys. Fluids A 3, 1718–1729 (1991)CrossRefGoogle Scholar
  13. 13.
    Green, J.S.A.: Two-dimensional turbulence near the viscous limit. J. Fluid Mech. 62, 273–287 (1974)Google Scholar
  14. 14.
    Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. New York: Springer, 1983Google Scholar
  15. 15.
    Joseph, D.D., Sattinger, D.: Bifurcating time periodic solutions and their stability. Arch. Rational Mech. Anal. 45, 75–109 (1972)Google Scholar
  16. 16.
    Khinchin, A.Ya.: Continued Fractions. Chicago, IL: University of Chicago Press, 1964Google Scholar
  17. 17.
    Kim, S.-C., Okamoto, H.: Bifurcations and inviscid limit of rhombic Navier-Stokes flows in tori. IMA J. Appl. Math. 68, 119–134 (2003)Google Scholar
  18. 18.
    Kincaid, D., Cheney, W.: Numerical Analysis. Pacific Grove, CA: Brooks/Cole, 1990Google Scholar
  19. 19.
    Lambert, J.D.: Numerical Methods for Ordinary Differential Systems. Chichester: Wiley, 1991Google Scholar
  20. 20.
    Landau, L.: On the problem of turbulence. Comptes Rend. Acad. Sci. USSR 44, 311–316 (1944)Google Scholar
  21. 21.
    Lin, C.C.: The Theory of Hydrodynamic Stability. Cambridge: Cambridge University Press, 1955Google Scholar
  22. 22.
    Lorenz, E.N.: Deterministic non-periodic flow. J. Atmos. Sci. 20, 130–141 (1963)Google Scholar
  23. 23.
    Ma, T., Wang, S.: Attractor bifurcation theory and its applications to Rayleigh-Bénard convection. Commun. Pure Appl. Anal. 2, 591–599 (2003)Google Scholar
  24. 24.
    Ma, T., Wang, S.: Dynamic bifurcation and stability in the Rayleigh-Bénard convection. Commun. Math. Sci. 2, 159–183 (2004)MathSciNetGoogle Scholar
  25. 25.
    Marchioro, C.: An example of absence of turbulence for any Reynolds number. Commun. Math. Phys. 105, 99–106 (1986)Google Scholar
  26. 26.
    Meshalkin, L.D., Sinai, Ya.G.: Investigation of the stability of a stationary solution of a system of equations for the plane movement of an incompressible viscous fluid. J. Math. Mech. 19, 1700–1705 (1961)Google Scholar
  27. 27.
    Obukhov, A.M.: Kolmogorov flow and laboratory simulation of it. Russ. Math. Surv. 38, 113–126 (1983)Google Scholar
  28. 28.
    Okamoto, H., Shoji, M.: Bifurcation diagrams in Kolmogorov’s problem of viscous incompressible fluid on 2-D Tori. Japan J. Indus. Appl. Math. 10, 191–218 (1993)Google Scholar
  29. 29.
    Platt, N., Sirovich, L., Fitzmaurice, N.: An investigation of chaotic Kolmogorov flows. Phys. Fluids A 3, 681–696 (1991)Google Scholar
  30. 30.
    Ruelle, D., Takens, F.: On the nature of turbulence. Commun. Math. Phys. 20, 167–192 (1971)Google Scholar
  31. 31.
    Tran, C.V., Shepherd, T.G., Cho, H.-R.: Stability of stationary solutions of the forced Navier-Stokes equations on the two-torus. Discrete Cont. Dyn. Syst. B 2, 483–494 (2002)Google Scholar
  32. 32.
    Wall, H.S.: Analytic Theory of Continued Fractions. New York: D. Van Nostrand Company, 1948Google Scholar
  33. 33.
    Yudovich, V.I.: Example of the generation of a secondary stationary or periodic flow when there is loss of stability of the laminar flow of a viscous incompressible fluid. J. Math. Mech. 29, 587–603 (1965)Google Scholar
  34. 34.
    Zhang, X., Frenkel, A.L.: Large-scale instability of generalized oscillating Kolmogorov flows. SIAM J. Appl. Math. 58, 540–564 (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Zhi-Min Chen
    • 1
    • 2
  • W.G. Price
    • 1
  1. 1.School of Engineering Sciences, Ship ScienceUniversity of SouthamptonSouthamptonUK
  2. 2.School of MathematicsNankai UniversityTianjinP.R. China

Personalised recommendations