Communications in Mathematical Physics

, Volume 254, Issue 3, pp 513–563 | Cite as

Mathematics Underlying the F-Theory/Heterotic String Duality in Eight Dimensions

  • Adrian Clingher
  • John W. Morgan


We give an analytic description of the moduli space of classical vacua for F-theory compactified on elliptic K3 surfaces, on open tubular regions near the two Type II boundary divisors. The structure of these open sets is related to the total spaces of certain holomorphic theta fibrations over the corresponding boundary divisors. As the two Type II divisors can be naturally identified as moduli spaces of elliptic curves and flat G-bundles with G=(E8×E8)⋊ Open image in new window or Spin(32)/ Open image in new window , one is led to an analytic isomorphism between these open domains and regions of the moduli spaces of heterotic string theory compactified on the two-torus corresponding to large volumes of the torus. This provides a proof for the classical version of F-theory/Heterotic String Duality in eight dimensions. A description of the Type II boundary points in terms of elliptic stable K3 surfaces is also given.


Neural Network String Theory Modulus Space Analytic Description Boundary Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ash, A., Mumford, D., Rapoport, M., Tai, Y.: Smooth Compactification of Locally Symmetric Varieties. In: Lie Groups: History, Frontiers and Applications, Vol. IV, Brookline, MA: Math. Sci. Press, 1975Google Scholar
  2. 2.
    Aspinwall, P.S., Morrison, D.R.: String Theory on K3 surfaces. In: Mirror symmetry, II, Providence, RI: Amer. Math. Soc., 1997. pp. 703–716Google Scholar
  3. 3.
    Baily, W.L. Jr., Borel, A.: Compactification of Arithmetic Quotients of Bounded Symmetric Domains. Ann. of Math. (2) 84, 442–528 (1966)Google Scholar
  4. 4.
    Barth, W., Peters, C., Van de Ven, A.: Compact Complex Surfaces. Berlin: Springer-Verlag, 1984Google Scholar
  5. 5.
    Carlson, J.A.: Extensions of Mixed Hodge Structures. In: Journées de Géometrie Algébrique d’Angers, Juillet 1979/Algebraic Geometry, Angers, 1979, Alphen aan den Rijn: Sijthoff & Noordhoff, 1980, pp. 107–127Google Scholar
  6. 6.
    Clingher, A.: Heterotic String Data and Theta Functions., 2001
  7. 7.
    Demazure, M., Pinkham, H.C. (eds.): Séminaire sur les Singularités des Surfaces. Volume 777 of Lecture Notes in Mathematics. Berlin: Springer, 1980Google Scholar
  8. 8.
    Freed, D.S.: Dirac Charge Quantization and Generalized Differential Cohomology. In: Surveys in differential geometry, Surv. Differ. Geom., VII, Somerville, MA: International Press, 2000. pp. 129–194Google Scholar
  9. 9.
    Friedman, R.: Hodge Theory, Degenerations and the Global Torelli Problem. Thesis, Harvard University, 1981Google Scholar
  10. 10.
    Friedman, R.: Global Smoothings of Varieties with Normal Crossings. Ann. of Math. (2) 118(1), 75–114 (1983)Google Scholar
  11. 11.
    Friedman, R.: A New Proof of the Global Torelli Theorem for K3 Surfaces. Ann. of Math. (2) 120(2), 237–269 (1984)Google Scholar
  12. 12.
    Friedman, R.: The Period Map at the Boundary of Moduli. In: Topics in transcendental algebraic geometry (Princeton, N.J., 1981/1982), Princeton, NJ: Princeton Univ. Press, 1984, pp. 183–208Google Scholar
  13. 13.
    Friedman, R., Morgan, J., Witten, E.: Vector Bundles and F theory. Commun. Math. Phys. 187(3), 679–743 (1997)Google Scholar
  14. 14.
    Friedman, R., Morgan, J.W.: Principal Holomorphic Bundles over Elliptic Curves IV: del Pezzo Surfaces, in preparationGoogle Scholar
  15. 15.
    Friedman, R., Morgan, J.W., Witten, E.: Principal G-bundles over Elliptic Curves. Math. Res. Lett. 5(1–2), 97–118 (1998)Google Scholar
  16. 16.
    Ginsparg, P.: On Toroidal Compactification of Heterotic Superstrings. Phys. Rev. D (3) 35(2), 648–654 (1987)Google Scholar
  17. 17.
    Griffiths, P., Schmid, W.: Recent Developments in Hodge Theory: A Discussion of Techniques and Results. In: Discrete subgroups of Lie groups and applicatons to moduli (Internat. Colloq., Bombay, 1973), Bombay: Oxford Univ. Press, 1975, pp. 31–127Google Scholar
  18. 18.
    Griffiths, P.A.: Periods of Integrals on Algebraic Manifolds: Summary of Main Results and Discussion of Open Problems. Bull. Amer. Math. Soc. 76, 228–296 (1970)Google Scholar
  19. 19.
    Kac, V.G., Peterson, D.H. Infinite-Dimensional Lie Algebras, Theta Functions and Modular Forms. Adv. in Math. 53(2), 125–264 (1984)Google Scholar
  20. 20.
    Kulikov, V.S.: Degenerations of K3 Surfaces and Enriques Surfaces. Izv. Akad. Nauk SSSR Ser. Mat. 41(5), 1008–1042, 1199 (1977)Google Scholar
  21. 21.
    Looijenga, E., Peters, C.: Torelli Theorems for KählerK3Surfaces. Compositio Math. 42(2), 145–186 (1980/81)Google Scholar
  22. 22.
    Manin, Yu.I.: Cubic Forms:Algebra, Geometry, Arithmetic. Amsterdam: North-Holland Publishing Co., 1986Google Scholar
  23. 23.
    Mumford, D.: Tata Lectures on Theta. I (with the assistance of C. Musili, M. Nori, E. Previato and M. Stillman), Boston, MA: Birkhäuser Boston Inc., 1983Google Scholar
  24. 24.
    Narain, K.S.: New Heterotic String Theories in Uncompactified Dimensions <10. Phys. Lett. B 169(1), 41–46 (1986)Google Scholar
  25. 25.
    Narain, K.S., Sarmadi, M.H., Witten, E.: A Note on Toroidal Compactification of Heterotic String Theory. Nucl. Phys. B 279(3–4), 369–379 (1987)Google Scholar
  26. 26.
    Dolgachev, I.V.: Mirror Symmetry for Lattice Polarized K3 Surfaces. J. Math. Sci. 81(3), 2599–2630 (1996)Google Scholar
  27. 27.
    Persson, U., Pinkham, H.: Degeneration of Surfaces with Trivial Canonical Bundle. Ann. of Math. (2) 113(1), 45–66 (1981)Google Scholar
  28. 28.
    Pjateckii-Šapiro, I.I., Šafarevič, I.R.: Torelli’s Theorem for Algebraic Surfaces of Type k3. Izv. Akad. Nauk SSSR Ser. Mat. 35, 530–572 (1971)Google Scholar
  29. 29.
    Schmid, W.: Variation of Hodge Structure: The Singularities of the Period Mapping. Invent. Math. 22, 211–319 (1973)Google Scholar
  30. 30.
    Sen, A.: F-Theory and Orientifolds. Nucl. Phys. B 475(3), 562–578 (1996)Google Scholar
  31. 31.
    Cardoso, G., Curio, G., Lüst, D., Mohaupt, T.: On the duality between the heterotic string and F-theory in 8 dimensions. Phys. Lett. B 389(3), 479–484 (1996)Google Scholar
  32. 32.
    Siegel, C.L.: Advanced Analytic Number Theory. Second edition, Bombay: Tata Institute of Fundamental Research, 1980Google Scholar
  33. 33.
    Siu, Y.T., Trautmann, G.: Deformations of Coherent Analytic Sheaves with Compact Supports. Mem. Amer. Math. Soc. 29(238), iii+155 (1981)Google Scholar
  34. 34.
    Vafa, C.: Evidence for F-theory. Nucl. Phys. B 469(3), 403–415 (1996)Google Scholar
  35. 35.
    Witten, E.: World-Sheet Corrections via D-instantons. J. High Energy Phys. 2, Paper 30, 18 (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Adrian Clingher
    • 1
  • John W. Morgan
    • 2
    • 3
  1. 1.School of MathematicsInstitute for Advanced StudyPrincetonUSA
  2. 2.Department of MathematicsColumbia UniversityNew YorkUSA
  3. 3.Department of MathematicsStanford UniversityStanfordUSA

Personalised recommendations