Communications in Mathematical Physics

, Volume 254, Issue 3, pp 565–580 | Cite as

Stable Bundles on Non-Kähler Elliptic Surfaces

  • Vasile BrînzănescuEmail author
  • Ruxandra Moraru


In this paper, we study the moduli spaces Open image in new window of stable rank-2 vector bundles on non-Kähler elliptic surfaces, thus giving a classification of these bundles; in the case of Hopf and Kodaira surfaces, these moduli spaces admit the structure of an algebraically completely integrable Hamiltonian system.


Neural Network Statistical Physic Complex System Nonlinear Dynamics Modulus Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bănică, C., Le Potier, J.: Sur l’existence des fibrés vectoriels holomorphes sur les surfaces non-algébriques. J. Reine Angew. Math. 378, 1–31 (1987)Google Scholar
  2. 2.
    Becker, K., Becker, M., Dasgupta,K., Green, P.S.: Compactification of heterotic theory on non-Kähler complex manifolds: I. JHEP 0304, 007 (2003)Google Scholar
  3. 3.
    Barth, W., Peters, C., Van de Ven, A.: Compact complex surfaces. Berlin, Heidelberg, New York: Springer-Verlag, 1984Google Scholar
  4. 4.
    Bottacin, F.: Poisson structures on moduli spaces of sheaves over Poisson surfaces. Invent. Math. 121 421–436 (1995)Google Scholar
  5. 5.
    Braam, P.J., Hurtubise, J.: Instantons on Hopf surfaces and monopoles on solid tori. J. Reine Angew. Math. 400 146–172 (1989)Google Scholar
  6. 6.
    Brinzănescu, V.: Holomorphic vector bundles over compact complex surfaces. Lect. Notes in Math. 1624, Berlin-Heidelberg-New York: Springer, 1996Google Scholar
  7. 7.
    Brinzănescu, V., Moraru, R.: Holomorphic rank-2 vector bundles on non-Kähler elliptic surfaces., 2003
  8. 8.
    Brinzănescu, V., Moraru, R.: Twisted Fourier-Mukai transforms and bundles on non-Kähler elliptic surfaces., 2003
  9. 9.
    Brinzănescu, V., Ueno, K.: Néron-Severi group for torus quasi bundles over curves. In: Moduli of vector bundles (Sanda, 1994; Kyoto, 1994), Lecture Notes in Pure and Appl. Math. 179, New York: Dekker, 1996, pp. 11–32Google Scholar
  10. 10.
    Buchdahl N.P.: Hermitian-Einstein connections and stable vector bundles over compact complex surfaces. Math. Ann. 280, 625–648 (1988)Google Scholar
  11. 11.
    Cardoso, G.L., Curio, G., Dall’Agata, G., Lüst, D., Manousselis, P., Zoupanos, G.: Non-Kähler string backgrounds and their five torsion classes. Nucl. Phys B 652, 5–34 (2003)Google Scholar
  12. 12.
    Donagi, R.: Principal bundles on elliptic fibrations. Asian J. Math. 1(2), 214–223 (1997)Google Scholar
  13. 13.
    Friedman, R.: Rank two vector bundles over regular elliptic surfaces. Invent. Math. 96, 283–332 (1989)Google Scholar
  14. 14.
    Friedman, R.: Algebraic Surfaces and Holomorphic Vector Bundles. UTX, New York- Berlin-Heidelberg, Springer, 1998Google Scholar
  15. 15.
    Friedman, R., Morgan, J., Witten, E.: Vector bundles over elliptic fibrations. J. Alg. Geom. 2, 279–401 (1999)Google Scholar
  16. 16.
    Gauduchon, P.: Le théorème de l’excentricité nulle. C. R. A. S. Paris 285, 387–390 (1977)Google Scholar
  17. 17.
    Goldstein, E., Prokushkin, S.: Geometric model for complex non-Kähler manifolds with SU(3) structure., 2002
  18. 18.
    Kodaira, K.: On the structure of compact complex analytic surfaces I. Am. J. Math. 86, 751–798 (1964)zbMATHGoogle Scholar
  19. 19.
    Lübke, M., Teleman, A.: The Kobayashi-Hitchin correspondence. River Edge, NJ: World Scientific Publishing Co., Inc., 1995Google Scholar
  20. 20.
    Moraru, R.: Integrable systems associated to a Hopf surface. Canad. J. Math. 55(3), 609–635 (2003)Google Scholar
  21. 21.
    Teleman, A.: Moduli spaces of stable bundles on non-Kähler elliptic fibre bundles over curves. Expo. Math. 16, 193–248 (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  1. 1.Institute of Mathematics “Simion Stoilow”Romanian AcademyBucharestRomania
  2. 2.Department of Mathematics and StatisticsBurnside Hall, McGill UniversityMontrealCanada
  3. 3.The Fields InstituteTorontoCanada

Personalised recommendations