Advertisement

Communications in Mathematical Physics

, Volume 254, Issue 2, pp 479–488 | Cite as

Hidden Structure of Symmetries

  • O.I. Bogoyavlenskij
Article
  • 55 Downloads

Abstract

A hidden additional algebraic structure is discovered for the Lie algebra of symmetries of any dynamical system V. The structure is based on the properties of the Lie derivative operator L V and on a hidden canonical flag structure in the eigenspaces of any linear operator.

Keywords

Neural Network Dynamical System Statistical Physic Complex System Linear Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andrews, G.E.: The theory of partitions. London: Addison-Wesley Publishing Co., 1976Google Scholar
  2. 2.
    Bogoyavlenskij, O.I.: Theory of tensor invariants of integrable Hamiltonian systems. II. Theorem on symmetries and its applications. Commun. Math. Phys. 184, 301–365 (1997)zbMATHGoogle Scholar
  3. 3.
    Bogoyavlenskij, O.I.: Conformal symmetries of dynamical systems and Poincaré 1892 concept of iso-energetic non-degeneracy. C. R. Acad. Sci. Paris 326, 213–218 (1998)zbMATHGoogle Scholar
  4. 4.
    Finkbeiner, D.T.: Introduction to matrices and linear transformations. San Francisco: W. H. Freeman and Co., 1978Google Scholar
  5. 5.
    Fuchssteiner, B.: Mastersymmetries, higher order time-dependent symmetries and conserved densities of nonlinear evolution equations. Progr. Theor. Phys. 70, 1508–1522 (1983)zbMATHGoogle Scholar
  6. 6.
    Gantmacher, F.R.: The theory of matrices. 1. New York: Chelsea Publ. Co., 1960Google Scholar
  7. 7.
    Kolmogorov, A.N.: The general theory of dynamical systems and classical mechanics. In: Proc. Intern. Congr. Math. 1954, 1. Amsterdam: North-Holland Publ. Co., 1957, pp. 315–333Google Scholar
  8. 8.
    Marsden, J.E., Ratiu, T.S.: Introduction to mechanics and symmetry. New York: Springer Verlag, 1999Google Scholar
  9. 9.
    Poincaré, H.: Les mètodes nouvelles de la mèchanique celeste. T. 1. Paris: Gauthier - Villars, 1892Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • O.I. Bogoyavlenskij
    • 1
  1. 1.Department of MathematicsQueen’s UniversityKingstonCanada

Personalised recommendations