Advertisement

Communications in Mathematical Physics

, Volume 254, Issue 3, pp 719–760 | Cite as

Dynamical Yang-Baxter Equation and Quantum Vector Bundles

  • J. Donin
  • A. Mudrov
Article

Abstract

We develop a categorical approach to the dynamical Yang-Baxter equation (DYBE) for arbitrary Hopf algebras. In particular, we introduce the notion of a dynamical extension of a monoidal category, which provides a natural environment for quantum dynamical R-matrices, dynamical twists, etc. In this context, we define dynamical associative algebras and show that such algebras give quantizations of vector bundles on coadjoint orbits. We build a dynamical twist for any pair of a reductive Lie algebra and its Levi subalgebra. Using this twist, we obtain an equivariant star product quantization of vector bundles on semisimple coadjoint orbits of reductive Lie groups.

Keywords

Vector Bundle Hopf Algebra Associative Algebra Quantum Vector Categorical Approach 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Avan, J., Babelon, O., Billey, E.: The Gervais-Neveu-Felder equation and the quantum Calogero-Moser systems. Commun. Math. Phys. 178, 281–299 (1996)Google Scholar
  2. 2.
    Alekseev, A., Lachowska, A.: Invariant *-product on coadjoint orbits and the Shapovalov pairing. http://arxiv.org/abs/math.QA/0308100, 2003
  3. 3.
    Alekseev, A., Meinrenken, E.: The non-commutative Weil algebra. Invent. Math. 135, 135–172 (2000)Google Scholar
  4. 4.
    Alekseev, A., Faddeev, L.: T*(G)t: a toy model of conformal field theory. Commun. Math. Phys. 141, 413–422 (1991)Google Scholar
  5. 5.
    Balog, J., Dabrowski, L., Fehér, L.: Classical r-matrix and exchange algebra in WZNW and Toda field theories. Phys. Lett. B 244, # 2, 227–234 (1990)Google Scholar
  6. 6.
    Drinfeld, V.: Quantum Groups. In Proc. Int. Congress of Mathematicians, Berkeley, 1986, ed. A. V. Gleason, Providence, RI: AMS, (1987), pp. 798–820Google Scholar
  7. 7.
    Drinfeld, V.: Hamiltonian structures on Lie groups, Lie bialgebras and the geometric meaning of the classical Yang-Baxter equations. Sov. Math. Dokl. 27, 68–71 (1983)Google Scholar
  8. 8.
    Drinfeld, V.: Quasi-Hopf algebras. Leningrad Math.J. 1, 1419–1457 (1990)Google Scholar
  9. 9.
    Drinfeld, V.: On Poisson homogeneous spaces of Poisson-Lie groups. Theor. Math. Phys. 95, 226-227 (1993)Google Scholar
  10. 10.
    Dolan, B. P., Jahn, O.: Fuzzy Complex Grassmannian Spaces and their Star Products. Int. J. Mod. Phys. A 18, 1935-1958 (2003)Google Scholar
  11. 11.
    Donin, J.: Open image in new window-invariant quantization of coadjoint orbits and vector bundles over them. J. Geom. Phys., 38, #1, 54–80 (2001)Google Scholar
  12. 12.
    Donin, J.: Quantum G-manifolds. Contemp. Math. 315, 47–60 (2002)Google Scholar
  13. 13.
    Donin, J., Gurevich, D., Shnider, S.: Double quantization in some orbits in the coadjoint representiations of simple Lie groups. Commun. Math. Phys. 204, 39–60 (1999)Google Scholar
  14. 14.
    Donin, J., Gurevich, D., Shnider, S.: Quantization of function algebras on semisimple orbits in Open image in new window. http://arxiv.org/abs/q-alg/9607008, 1996
  15. 15.
    Donin, J., Mudrov, A.: Method of quantum characters in equivariant quantization. Commun. Math. Phys. 234, 533–555 (2003)Google Scholar
  16. 16.
    Donin, J., Mudrov, A.: Explicit equivariant quantization on coadjoint orbits of GL(n). Lett. Math. Phys. 62, 17–32 (2002)Google Scholar
  17. 17.
    Donin, J., Mudrov, A.: Reflection Equation, Twist, and Equivariant Quantization. Isr. J. Math. 136, 11–28 (2003)Google Scholar
  18. 18.
    Donin, J., Mudrov, A.: Quantum coadjoint orbits of GL(n) and generalized Verma modules. http://arxiv.org/abs/math.QA/0212318, 2002
  19. 19.
    Donin, J., Mudrov, A.: Quantum groupoids associated with dynamical categories. http://arxiv.org/abs/math.QA/0311116, 2003
  20. 20.
    Donin, J., Ostapenko, V.: Equivariant quantization on quotients of simple Lie groups by reductive subgroups of maximal rank. Czech. J. of Phys. 52, # 11, 1213–1218 (2002)Google Scholar
  21. 21.
    Donin, J., Shnider, S.: Quantum symmetric spaces. J. Pure & Applied Alg. 100, 103–116 (1995)Google Scholar
  22. 22.
    Enriquez, B., Etingof, P.: Quantization of Alekseev-Meinrenken dynamical r-matrices. Amer. Math. Soc. Transl. 210, # 2, 81–98 (2003)Google Scholar
  23. 23.
    Enriquez, B., Etingof, P.: Quantization of classical dynamical r-matrices withnonabelian base. To appear in Commun. Math. Phys., DOI 10.1007/S00220-004-1243-2, 2004Google Scholar
  24. 24.
    Etingof, P., Kazhdan, D.: Quantization of Lie bialgebras. Selecta Math. 2, # 1, 1–41 (1996)Google Scholar
  25. 25.
    Etingof, P., Schiffmann, O.: Lectures on the dynamical Yang-Baxter equation. Quantum Groups and Lie theory. London Math. Soc. Lecture Note 290, 89–129 (2001)Google Scholar
  26. 26.
    Etingof, P., Schiffmann, O.: On the moduli space of classical dynamical r-matrices. Math. Res. Lett. 9, 157–170 (2001)Google Scholar
  27. 27.
    Etingof, P., Schiffmann, O., Schedler, T.: Explicit quantization of dynamical r-matrices for finite dimensional semisimple Lie algebras. J.AMS 13, 595–609 (2000)Google Scholar
  28. 28.
    Etingof, P., Varchenko, A.: Geometry and classification of solutions of the classical dynamical Yang-Baxter equation. Commun. Math. Phys. 192, 77–120 (1998)Google Scholar
  29. 29.
    Etingof, P., Varchenko, A.: Solutions of the quantum dynamical Yang-Baxter equation and dynamical quantum groups. Commun. Math. Phys. 196, 591–640 (1998)Google Scholar
  30. 30.
    Etingof, P., Varchenko, A.: Exchange dynamical quantum groups. Commun. Math. Phys. 205, 19–52 (1999)Google Scholar
  31. 31.
    Felder, G.: Conformal field theories and integrable models associated to elliptic curves. In: Proc. ICM Zurich, Basel: Birkhäuser, 1994, pp. 1247–1255Google Scholar
  32. 32.
    Fehér, L.: Dynamical r-matrices and Poisson-Lie symmetries of the chiral WZNW model. Talkgiven at the workshop on Integrable Theories, Solitens and Duality, IFT Sao Paulo, July 2002, http://arxiv.org/abs/hep-th/0212006, 2002
  33. 33.
    Fehér, L., Marshall, I.: On a Poisson-Lie analogue of the classical dynamical Yang-Baxter equation for self dual Lie algebras. Lett. Math. Phys. 62, 51–62 (2002)Google Scholar
  34. 34.
    Faddeev, L.: On the exchange matrix of the WZNW model. Commun. Math. Phys. 132, 131–138 (1990)MathSciNetzbMATHGoogle Scholar
  35. 35.
    Faddeev, L., Reshetikhin, N., Takhtajan, L.: Quantization of Lie groups and Lie algebras. Leningrad Math. J. 1, 193–226 (1990)MathSciNetzbMATHGoogle Scholar
  36. 36.
    Gurevich, D., Leclercq, R., Saponov, P.: q-Index on braided spheres. http://arxic.org/abs/math.QA/0207268, 2002
  37. 37.
    Gervais, J.-L., Neveu, A.: Novel triangle relation and absence of tachyons in Liouville string theory. Nucl. Phys. B 238, 125–141 (1984)Google Scholar
  38. 38.
    Jantzen, J.-C.: Kontravariante Formen auf induzierten Darstellungen halbeinfacher aa Lie-Algebren. Math. Ann. 226, 53–65 (1977)Google Scholar
  39. 39.
    Kassel, Ch.: Quantum groups. NY Springer, 1995.Google Scholar
  40. 40.
    Karolinskii, E.: A classification of Poisson homogeneous spaces of complex reductive Poisson-Lie groups. In: Poisson Geometry, J. Grabouski, P. Urbauski (eds.), Banach Center Publ. 51, Warsaw: Banach Center, 2000, pp. 103–108Google Scholar
  41. 41.
    Karolinsky, E., Muzykin, K., Stolin, A., Tarasov, V.: Dynamical Yang-Baxter equations, quasi-Poisson homogeneous spaces, and quantization. http://arxiv.org/abs/math.QA/0309203, 2003
  42. 42.
    Kulish, P. P., Sklyanin, E. K.: Algebraic structure related to the reflection equation. J. Phys. A 25, 5963–5976 (1992)Google Scholar
  43. 43.
    Kulish, P.P., Sasaki, R.: Covariance properties of reflection equation algebras. Prog. Theor. Phys. 89, # 3, 741–761 (1993)Google Scholar
  44. 44.
    Lu, J.-H.: Classical dynamical r-matrices and homogeneous Poisson structures on G/H and K/T. Commun. Math. Phys. 212, 337–370 (2000)Google Scholar
  45. 45.
    Lu, J.H.: Hopf algebroids and quantum gouppoids. Int. J. Math. 7, 47–70 (1996)Google Scholar
  46. 46.
    Ostrik, V.: Module categories, weak Hopf algebras, and modular invariants. Transform. Groups 8, # 2, 177–206 (2003)Google Scholar
  47. 47.
    Reshetikhin, N., Semenov-Tian-Shansky, M.: Quantum R-matrices and factorization problem. J. Geom. Phys. 5, 533–550 (1988)Google Scholar
  48. 48.
    Schiffmann, O.: On classification of dynamical r-matrices. Math. Res. Lett. 5, 13–30 (1998)Google Scholar
  49. 49.
    Semenov-Tian-Shansky, M.: Poisson-Lie Groups, Quantum Duality Principle, and the Quantum Double. Contemp. Math. 175, 219–248 (1994)Google Scholar
  50. 50.
    Xu, P.: Triangular dynamical r-matrices and quantization. Adv. Math. 166, 1–49 (2002)Google Scholar
  51. 51.
    Xu, P.: Quantum Dynamical Yang-Baxter Equation Over a Nonabelian basis. Commun. Math. Phys. 226, 475–495 (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • J. Donin
    • 1
  • A. Mudrov
    • 1
  1. 1.Department of MathematicsBar Ilan UniversityRamat GanIsrael

Personalised recommendations