Advertisement

Communications in Mathematical Physics

, Volume 254, Issue 3, pp 659–694 | Cite as

Freely Generated Vertex Algebras and Non–Linear Lie Conformal Algebras

  • Alberto De SoleEmail author
  • Victor G. Kac
Article

Abstract

We introduce the notion of a non–linear Lie conformal superalgebra and prove a PBW theorem for its universal enveloping vertex algebra. We also show that conversely any graded freely generated vertex algebra is the universal enveloping algebra of a unique, up to isomorphism, non–linear Lie conformal superalgebra. This correspondence will be applied in the subsequent work to the problem of classification of finitely generated simple graded vertex algebras.

Keywords

Neural Network Statistical Physic Complex System Nonlinear Dynamics Quantum Computing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bakalov, B., Kac, V.: Field algebras. Int. Math. Res. Not. 3, 123–159 (2003)CrossRefGoogle Scholar
  2. 2.
    Borcherds, R.: Vertex algebras, Kac-Moody algebras, and the Monster. Proc. Nat. Acad. Sci. U.S.A. 83(10), 3068–3071 (1986)Google Scholar
  3. 3.
    de Boer, J., Tjin, T.: The relation between quantum W algebras and Lie algebras. Commun. Math. Phys. 160(2), 317–332 (1994)Google Scholar
  4. 4.
    D’Andrea, A., Kac, V.: Structure theory of finite conformal algebras. Selecta Math. (N.S.) 4(3), 377–418 (1998)CrossRefGoogle Scholar
  5. 5.
    De Sole, A.: Vertex algebras generated by primary fields of low conformal weight. PhD dissertation, MIT, Department of Mathematics, June 2003Google Scholar
  6. 6.
    Dong, C., Lepowsky, J.: Generalized vertex algberas and relative vertex operators. Progress in Math 112, Boston: Birkhauser, 1993Google Scholar
  7. 7.
    Feigin, B., Frenkel, E.: Quantization of the Drinfel′ d-Sokolov reduction. Phys. Lett. B 246(1-2), 75–81 (1990)Google Scholar
  8. 8.
    Fattori, D., Kac, V.: Classification of finite simple Lie conformal superalgebras. J. Algebra 258(1), 23–59 (2002)CrossRefGoogle Scholar
  9. 9.
    Frenkel, I., Huang, Y-Z., Lepowsky, J.: On axiomatic approaches to vertex operator algebras and modules. J. Memoirs Amer. Math. Soc. 104, (1993)Google Scholar
  10. 10.
    Frenkel, I., Lepowsky, J., Meurman, A.: Vertex operator algebras and the Monster. Pure and Appl. Math., Vol 134, Boston: Academic Press, 1988Google Scholar
  11. 11.
    Gorbounov, V., Malikov, F., Schechtman, V.: Gerbes of chiral differential operators. II. Invent. math. 155, 605–680, 2004.Google Scholar
  12. 12.
    Jacobson, N.: Lie algebras. In: Interscience Tracts in Pure and Applied Mathematics, No. 10, New York, London: Interscience Publishers (a division of John Wiley & Sons), 1962Google Scholar
  13. 13.
    Kac, V.: Superconformal algebras and transitive group actions on quadrics. Commun. Math. Phys. 186(1), 233–252, (1997). Erratum 217, 697–698, 2001.Google Scholar
  14. 14.
    Kac, V.: Vertex algebras for beginners, Volume 10 University Lecture Series. Providence, RI: American Mathematical Society, 1996. Second edition, 1998Google Scholar
  15. 15.
    Kac, V., Wakimoto, M.: Quantum reduction and representation theory of superconformal algebras. Adv. Math. 185, 400–458, 2004.Google Scholar
  16. 16.
    Li, H-S.: Local systems of vertex operators, vertex superalgebras and modules. J. Pure and Appl. Alg. 109, 143–195 (1996)CrossRefGoogle Scholar
  17. 17.
    Li, H-S.: Vertex algebras and vertex Poisson algebras. Commun. Contemp. Math 6, 61–110 (2004)CrossRefGoogle Scholar
  18. 18.
    Primc, M.: Vertex algebras generated by Lie algberas. J. Pure and Appl. Alg. 135, 253–293 (1999)CrossRefGoogle Scholar
  19. 19.
    Ramond, P., Schwarz, J.: Classification of dual model gauge algebras. Phys. Lett. B 64(1), 75–77 (1976)CrossRefGoogle Scholar
  20. 20.
    Zamolodchikov, A.: Infinite extra symmetries in two-dimensional conformal quantum field theory. Teoret. Mat. Fiz. 65(3), 347–359 (1985)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  1. 1.Department of MathematicsHarvard UniversityCambridgeUSA
  2. 2.Department of MathematicsMIT 77 Massachusetts AvCambridgeUSA

Personalised recommendations