Communications in Mathematical Physics

, Volume 252, Issue 1–3, pp 393–414 | Cite as

On the Relation Between Open and Closed Topological Strings

  • Anton KapustinEmail author
  • Lev Rozansky


We discuss the relation between open and closed string correlators using topological string theories as a toy model. We propose that one can reconstruct closed string correlators from the open ones by considering the Hochschild cohomology of the category of D-branes. We compute the Hochschild cohomology of the category of D-branes in topological Landau-Ginzburg models and partially verify the conjecture in this case.


Neural Network Statistical Physic Complex System String Theory Nonlinear Dynamics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ashok, S.K., Dell’Aquila, E., Diaconescu, D.E.: Fractional branes in Landau-Ginzburg orbifolds., 2004
  2. 2.
    Barannikov, S., Kontsevich, M.: Frobenius manifolds and formality of Lie algebra of polyvector fields. Internat. Math. Res. Notices 4, 201 (1998)CrossRefzbMATHGoogle Scholar
  3. 3.
    Bershadsky, M., Lerche, W., Nemeschansky, D., Warner, N.P.: Extended N = 2 superconformal structure of gravity and W gravity coupled to matter. Nucl. Phys. B 401, 304 (1993)CrossRefzbMATHGoogle Scholar
  4. 4.
    Brunner, I., Douglas, M.R., Lawrence, A.E., Romelsberger, C.: D-branes on the quintic. JHEP 0008, 015 (2000)Google Scholar
  5. 5.
    Brunner, I., Herbst, M., Lerche, W., Scheuner, B.: Landau-Ginzburg realization of open string TFT., 2003
  6. 6.
    Brunner, I., Schomerus, V.: On superpotentials for D-branes in Gepner models. JHEP 0010, 016 (2000)Google Scholar
  7. 7.
    Diaconescu, D.E., Douglas, M.R.: D-branes on stringy Calabi-Yau manifolds. abs/hep-th/0006224, 2000
  8. 8.
    Dijkgraaf, R., Witten, E.: Mean Field Theory, Topological Field Theory, And Multimatrix Models. Nucl. Phys. B 342, 486 (1990)CrossRefGoogle Scholar
  9. 9.
    Distler, J.: 2-D Quantum Gravity, Topological Field Theory And The Multicritical Matrix Models. Nucl. Phys. B 342, 523 (1990)CrossRefGoogle Scholar
  10. 10.
    Gato-Rivera, B., Semikhatov, A.M.: Minimal models from W constrained hierarchies via the Kontsevich-Miwa transform. Phys. Lett. B 288, 38 (1992)CrossRefGoogle Scholar
  11. 11.
    Gepner, D.: Exactly Solvable String Compactifications On Manifolds Of SU(N) Holonomy. Phys. Lett. B 199, 380 (1987)CrossRefGoogle Scholar
  12. 12.
    Gerstenhaber, M.: The cohomology structure of an associative ring. Ann. of Math. 2, 267 (1963)zbMATHGoogle Scholar
  13. 13.
    Gerstenhaber, M., Schack, S.D.: Algebraic cohomology and deformation theory. In: Deformation theory of algebras and structures and applications (Il Ciocco, 1986), Dordrecht: Kluwer, 1988, pp. 11–24Google Scholar
  14. 14.
    Getzler, E.: Batalin-Vilkovisky Algebras And Two-Dimensional Topological Field Theories. Commun. Math. Phys. 159, 265 (1994)zbMATHGoogle Scholar
  15. 15.
    Getzler, E.: Two-Dimensional Topological Gravity And Equivariant Cohomology. Commun. Math. Phys. 163, 473 (1994)zbMATHGoogle Scholar
  16. 16.
    Gutperle, M., Satoh, Y.: D-branes in Gepner models and supersymmetry. Nucl. Phys. B 543, 73 (1999)CrossRefzbMATHGoogle Scholar
  17. 17.
    Herbst, M., Lazaroiu, C.I.: Localization and traces in open-closed topological Landau-Ginzburg models., 2004
  18. 18.
    Herbst, M., Lazaroiu, C.I., Lerche, W.: Superpotentials, A relations and WDVV equations for open topological strings., 2004
  19. 19.
    Hori, K., Walcher, J.: F-term equations near Gepner points., 2004
  20. 20.
    Intriligator, K.A., Vafa, C.: Landau-Ginzburg Orbifolds. Nucl. Phys. B 339, 95 (1990)CrossRefGoogle Scholar
  21. 21.
    Kapustin, A., Li, Y.: D-branes in Landau-Ginzburg models and algebraic geometry. JHEP 0312, 005 (2003)CrossRefGoogle Scholar
  22. 22.
    Kapustin, A., Li, Y.: Topological correlators in Landau-Ginzburg models with boundaries. Adv. Theor. Math. Phys. 7, 727–749 (2004)Google Scholar
  23. 23.
    Katz, S., Sharpe, E.: D-branes, open string vertex operators, and Ext groups. Adv. Theor. Math. Phys. 6, 979–1030 (2003)Google Scholar
  24. 24.
    Khovanov, M., Rozansky, L.: Matrix factorizations and link homology., 2004
  25. 25.
    Kontsevich, M.: Homological Algebra of Mirror Symmetry. In: Proc. Int. Congress of Mathematics, Zurich, 1994, Vol. 1, Basel-Boston: Birkhäuser, 1995, pp. 120–139Google Scholar
  26. 26.
    Kugo, T., Kunitomo, H., Suehiro, K.: Nonpolynomial Closed String Field Theory. Phys. Lett. B 226, 48 (1989)CrossRefGoogle Scholar
  27. 27.
    Lazaroiu, C.I.: On the structure of open-closed topological field theory in two dimensions. Nucl. Phys. B 603, 497 (2001)CrossRefzbMATHGoogle Scholar
  28. 28.
    Lazaroiu, C.I.: On the boundary coupling of topological Landau-Ginzburg models. abs/hep-th/0312286, 2003
  29. 29.
    Li, K.: Topological Gravity With Minimal Matter. Nucl. Phys. B 354, 711 (1991)CrossRefGoogle Scholar
  30. 30.
    Lian, B.H., Zuckerman, G.J.: New perspectives on the BRST algebraic structure of string theory. Commun. Math. Phys. 154, 613 (1993)zbMATHGoogle Scholar
  31. 31.
    Lian, B.H., Zuckerman, G.J.: Some Classical And Quantum Algebras. hep-th/9404010, 1994
  32. 32.
    Manin, Yu.I.: Three constructions of Frobenius manifolds: a comparative study. In: Sir Michael Atiyah, a great mathematician of the twentieth century, Asian J. of Math. 3 179 (1999)Google Scholar
  33. 33.
    Mukhi, S., Vafa, C.: Two-dimensional black hole as a topological coset model of c = 1 string theory. Nucl. Phys. B 407, 667 (1993)CrossRefzbMATHGoogle Scholar
  34. 34.
    Penkava, M., Schwarz, A.: A Algebras And The Cohomology Of Moduli Spaces. abs/hep-th/9408064, 1994
  35. 35.
    Penkava, M., Schwarz, A.: On some algebraic structure arising in string theory. abs/hep-th/9212072, 1992
  36. 36.
    Recknagel, A., Schomerus, V.: D-branes in Gepner models. Nucl. Phys. B 531, 185 (1998)CrossRefzbMATHGoogle Scholar
  37. 37.
    Saadi, M., Zwiebach, B.: Closed String Field Theory From Polyhedra. Annals Phys. 192, 213 (1989)CrossRefGoogle Scholar
  38. 38.
    Swan, R.G.: Hom cohomology of quasiprojective schemes. J. Pure Appl. Algebra 110, 57 (1996)CrossRefzbMATHGoogle Scholar
  39. 39.
    Vafa, C.: Topological Landau-Ginzburg Models. Mod. Phys. Lett. A 6, 337 (1991)zbMATHGoogle Scholar
  40. 40.
    Weibel, C.A., Geller, S.C.: Étale descent for Hom and cyclic homology. Comment. Math. Helv. 66, 368 (1991)zbMATHGoogle Scholar
  41. 41.
    Witten, E.: Noncommutative Geometry And String Field Theory. Nucl. Phys. B 268, 253 (1986)CrossRefGoogle Scholar
  42. 42.
    Witten, E.: On The Structure Of The Topological Phase Of Two-Dimensional Gravity. Nucl. Phys. B 340, 281 (1990)CrossRefMathSciNetGoogle Scholar
  43. 43.
    Witten, E.: Chern-Simons gauge theory as a string theory. Prog. Math. 133, 637 (1995)zbMATHGoogle Scholar
  44. 44.
    Witten, E.: Phases of N = 2 theories in two dimensions. Nucl. Phys. B 403, 159 (1993)CrossRefMathSciNetzbMATHGoogle Scholar
  45. 45.
    Witten, E., Zwiebach, B.: Algebraic structures and differential geometry in 2D string theory. Nucl. Phys. B 377, 55 (1992)CrossRefGoogle Scholar
  46. 46.
    Zwiebach, B.: Closed string field theory: Quantum action and the B-V master equation. Nucl. Phys. B 390, 33 (1993)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  1. 1.Department of PhysicsCalifornia Institute of TechnologyPasadenaUSA
  2. 2.Department of MathematicsUniversity of North CarolinaChapel HillUSA

Personalised recommendations