Advertisement

Communications in Mathematical Physics

, Volume 252, Issue 1–3, pp 167–187 | Cite as

Spontaneous Symmetry Breaking of a Hyperbolic Sigma Model in Three Dimensions

  • T. SpencerEmail author
  • M.R. Zirnbauer
Article

Abstract

Non-linear sigma models that arise from the supersymmetric approach to disordered electron systems contain a non-compact bosonic sector. We study the model with target space H2, the two-hyperboloid with isometry group SU(1,1), and prove that in three dimensions moments of the fields are finite in the thermodynamic limit. Thus the non-compact symmetry SU(1,1) is spontaneously broken. The bound on moments is compatible with the presence of extended states.

Keywords

Neural Network Statistical Physic Complex System Nonlinear Dynamics Electron System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brascamp, H., Lieb, E.: On extensions of the Brunn-Minkowski and Prekopa-Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation. J. Func. Anal. 22, 366–389 (1976)CrossRefzbMATHGoogle Scholar
  2. 2.
    Disertori, M., Pinson, H., Spencer, T.: Density of states of random band matrices. Commun. Math. Phys. 232, 83–124 (2002)CrossRefzbMATHGoogle Scholar
  3. 3.
    Efetov, K.B.: Supersymmetry and theory of disordered metals. Adv. Phys. 32, 53–127 (1983)MathSciNetGoogle Scholar
  4. 4.
    Efetov, K.B.: Supersymmetry in disorder and chaos. Cambridge: Cambridge University Press, 1987Google Scholar
  5. 5.
    Fyodorov, Y.V.: Negative moments of characteristic polynomials of random matrices: Ingham-Siegel integral as an alternative to Hubbard-Stratonovich transformation. Nucl. Phys. B 621, 643–674 (2002)CrossRefzbMATHGoogle Scholar
  6. 6.
    Fyodorov, Y.V., Mirlin, A.D.: Scaling properties of localization in random band matrices: a σ-model approach. Phys. Rev. Lett. 67, 2405–2409 (1991)CrossRefzbMATHGoogle Scholar
  7. 7.
    Helgason, S.: Differential geometry, Lie groups and symmetric spaces. New York: Academic Press, 1978Google Scholar
  8. 8.
    Niedermaier, M., Seiler, E.: Non-amenability and spontaneous symmetry breaking – the hyperbolic spin-chain. http://arxiv.org/abs/hep-th/0312293, 2003; Duncan, A., Niedermaier, M., Seiler, E.: Vacuum orbit and spontaneous symmetry breaking in hyperbolic sigma models. http://arxiv.org/abs/hep-th/0405163, 2004
  9. 9.
    Schäfer, L., Wegner, F.: Disordered system with n orbitals per site: Lagrange formulation, hyperbolic symmetry, and Goldstone modes. Z. Phys. B 38, 113–126 (1980)Google Scholar
  10. 10.
    Wegner, F.: The mobility edge problem: continuous symmetry and a conjecture. Z. Phys. B 35, 207–210 (1979)Google Scholar
  11. 11.
    Wegner, F.J.: Disordered system with n orbitals per site: n = ∞ limit. Phys. Rev. B 19, 783–792 (1979)CrossRefGoogle Scholar
  12. 12.
    Zirnbauer, M.R.: The supersymmetry method of random-matrix theory. http://arxiv.org/abs/math-ph/ 0404057, 2004

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  1. 1.School of MathematicsInstitute for Advanced StudyPrincetonUSA
  2. 2.Institut für Theoretische PhysikUniversität zu KölnGermany

Personalised recommendations