Advertisement

Communications in Mathematical Physics

, Volume 254, Issue 2, pp 401–423 | Cite as

Mirror Symmetric SU(3)-Structure Manifolds with NS Fluxes

  • Stéphane Fidanza
  • Ruben Minasian
  • Alessandro Tomasiello
Article

Abstract

When string theory is compactified on a six-dimensional manifold with a nontrivial NS flux turned on, mirror symmetry exchanges the flux with a purely geometrical composite NS form associated with lack of integrability of the complex structure on the mirror side. Considering a general class of T3-fibered geometries admitting SU(3) structure, we find an exchange of pure spinors (e iJ and Ω) in dual geometries under fiberwise T–duality, and study the transformations of the NS flux and the components of intrinsic torsion. A complementary study of action of twisted covariant derivatives on invariant spinors allows to extend our results to generic geometries and formulate a proposal for mirror symmetry in compactifications with NS flux.

Keywords

Manifold String Theory Mirror Symmetry General Class Covariant Derivative 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gurrieri, S., Louis, J., Micu, A., Waldram, D.: Mirror symmetry in generalized Calabi-Yau compactifications. Nucl. Phys. B 654, 61 (2003)CrossRefzbMATHGoogle Scholar
  2. 2.
    Vafa, C.: Superstrings and topological strings at large N. J. Math. Phys. 42, 2798 (2001)CrossRefMathSciNetzbMATHGoogle Scholar
  3. 3.
    Strominger, A., Yau, S.T., Zaslow, E.: Mirror symmetry is T-duality. Nucl. Phys. B 479, 243 (1996)CrossRefzbMATHGoogle Scholar
  4. 4.
    Hitchin, N.: Generalized Calabi-Yau manifolds. http://arxiv.org/abs/0209099, 2002
  5. 5.
    Leung, N.C., Yau, S.T., Zaslow, E.: From special Lagrangian to Hermitian-Yang-Mills via Fourier-Mukai transform. Adv. Theor. Math. Phys. 4, 1319 (2002)zbMATHGoogle Scholar
  6. 6.
    Marino, M., Minasian, R., Moore, G.W., Strominger, A.: Nonlinear instantons from supersymmetric p-branes. JHEP 0001, 005 (2000)Google Scholar
  7. 7.
    Douglas, M.R., Fiol, B., Romelsberger, C.: Stability and BPS branes. http://arxiv.org/abs/hepth/0002037, 2000
  8. 8.
    Strominger, A.: Superstrings With Torsion. Nucl. Phys. B 274, 253 (1986)CrossRefGoogle Scholar
  9. 9.
    Gauntlett, J.P., Martelli, D., Pakis, S., Waldram, D.: G-structures and wrapped NS5-branes. Commun. Math. Phys. 247, 421–445 (2004)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Cardoso, G.L., Curio, G., Dall’Agata, G., Lust, D., Manousselis, P., Zoupanos, G.: Non-Kaehler string backgrounds and their five torsion classes. Nucl. Phys. B 652, 5 (2003)CrossRefzbMATHGoogle Scholar
  11. 11.
    Bouwknegt, P., Evslin, J., Mathai, V.:T-duality: Topology change from H-flux. Commun. Math. Phys. 249, 383–415 (2004)CrossRefGoogle Scholar
  12. 12.
    Hassan, S.F.: SO(d,d) transformations of Ramond-Ramond fields and space-time spinors. Nucl. Phys. B 583, 431 (2000)CrossRefzbMATHGoogle Scholar
  13. 13.
    Joyce, D.D.: Compact manifolds with special holonomy. Oxford: Oxford Univ. Press, 2000Google Scholar
  14. 14.
    Kaste, P., Minasian, R., Tomasiello, A.: Supersymmetric M-theory compactifications with fluxes on seven-manifolds and G-structures. JHEP 0307, 004 (2003)CrossRefGoogle Scholar
  15. 15.
    Liu, J.T., Minasian, R.: U-branes and T**3 fibrations. Nucl. Phys. B 510, 538 (1998)CrossRefzbMATHGoogle Scholar
  16. 16.
    Hitchin, N.: Stable forms and special metrics. In: Global differential geometry: the mathematical legacy of Alfred Gray, Volume 288 of Contemp. Math. , Providence RI: AMS, 2001, pp. 70–89Google Scholar
  17. 17.
    Chiossi, S., Salamon, S.: The intrinsic torsion of SU(3) and G2 structures. In: Proc. conf. Differential Geometry, Valencia 2001, Singapore: World Scientific Publishing, 2002, pp. 115–133Google Scholar
  18. 18.
    Becker, K., Becker, M., Green, P.S., Dasgupta, K., Sharpe, E.: Compactifications of heterotic strings on non-Kaehler complex manifolds. II. Nucl. Phys. B 678, 19–100 (2004)CrossRefzbMATHGoogle Scholar
  19. 19.
    Rohm, R., Witten, E.: Annals Phys. 170, 454 (1986)Google Scholar
  20. 20.
    Grana, M., Polchinski, J.: Gauge / gravity duals with holomorphic dilaton. Phys. Rev. D 65 126005 (2002)Google Scholar
  21. 21.
    Kaste, P., Minasian, R., Petrini, M., Tomasiello, A.: Nontrivial RR two-form field strength and SU(3)-structure. Fortsch. Phys. 51, 764–768 (2003)CrossRefzbMATHGoogle Scholar
  22. 22.
    Kapustin, A.: Topological strings on noncommutative manifolds. Int. J. Geom. Math. Mod. Phys. 1, 49–81 (2004)CrossRefGoogle Scholar
  23. 23.
    Kapustin, A., Orlov, D.: Vertex algebras, mirror symmetry, and D-branes: The case of complex tori. Commun. Math. Phys. 233, 79 (2003)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Stéphane Fidanza
    • 1
  • Ruben Minasian
    • 1
  • Alessandro Tomasiello
    • 1
  1. 1.Centre de Physique ThéoriqueEcole Polytechnique, Unité mixte du CNRS et de l’EP, UMR 7644Palaiseau CedexFrance

Personalised recommendations