Advertisement

Communications in Mathematical Physics

, Volume 254, Issue 2, pp 367–400 | Cite as

Nonabelian Bundle Gerbes, Their Differential Geometry and Gauge Theory

  • Paolo AschieriEmail author
  • Luigi Cantini
  • Branislav Jurčo
Article

Abstract

Bundle gerbes are a higher version of line bundles, we present nonabelian bundle gerbes as a higher version of principal bundles. Connection, curving, curvature and gauge transformations are studied both in a global coordinate independent formalism and in local coordinates. These are the gauge fields needed for the construction of Yang-Mills theories with 2-form gauge potential.

Keywords

Neural Network Statistical Physic Complex System Gauge Theory Nonlinear Dynamics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Giraud, J.: Cohomologie non-abélienne. Grundlehren der mathematischen Wissenschaften 179, Berlin: Springer Verlag, 1971Google Scholar
  2. 2.
    Brylinski, J.L.: Loop Spaces, Characteristic Classes And Geometric Quantization. Progress in mathematics 107, Boston: Birkhäuser, 1993Google Scholar
  3. 3.
    Hitchin, N.: Lectures on special Lagrangian submanifolds. http://arxiv.org/abs/math.dg/9907034, 1999
  4. 4.
  5. 5.
    Murray, M.K.: Bundle gerbes. J. Lond. Math. Soc 2, 54, 403 (1996)zbMATHGoogle Scholar
  6. 6.
    Bouwknegt, P., Carey, A.L., Mathai, V., Murray, M.K., Stevenson, D.: Twisted K-theory and K-theory of bundle gerbes. Commun. Math. Phys. 228, 17 (2002)CrossRefMathSciNetzbMATHGoogle Scholar
  7. 7.
    Carey, A.L., Johnson, S., Murray, M.K.: Holonomy on D-branes. http://arxiv.org/abs/hep-th/0204199, 2002
  8. 8.
    Mackaay, M.: A note on the holonomy of connections in twisted bundles. Cah. Topol. Geom. Differ. Categ. 44, 39–62 (2003)zbMATHGoogle Scholar
  9. 9.
    Mackaay, M., Picken, R.: Holonomy and parallel transport for Abelian gerbes. Adv. Math. 170, 287 (2002)CrossRefzbMATHGoogle Scholar
  10. 10.
    Carey, A., Mickelsson, J., Murray, M.: Index theory, gerbes, and Hamiltonian quantization. Commun. Math. Phys. 183, 707 (1997)CrossRefzbMATHGoogle Scholar
  11. 11.
    Carey, A., Mickelsson, J., Murray, M.: Bundle gerbes applied to quantum field theory. Rev. Math. Phys. 12, 65–90 (2000)CrossRefzbMATHGoogle Scholar
  12. 12.
    Carey, A.L., Mickelsson, J.: The universal gerbe, Dixmier-Douady class, and gauge theory. Lett. Math. Phys. 59, 47 (2002)CrossRefzbMATHGoogle Scholar
  13. 13.
    Picken, R.: TQFT’s and gerbes. Algebr. Geom. Toplo. 4, 243–272 (2004)zbMATHGoogle Scholar
  14. 14.
    Gawedzki, K., Reis, N.: WZW branes and gerbes. Rev.Math.Phys. 14, 1281–1334 (2002)CrossRefGoogle Scholar
  15. 15.
    Freed, D.S., Witten, E.: Anomalies in string theory with D-branes. http://arxiv.org/abs/hep-th/9907189, 1999
  16. 16.
    Kapustin, A.: D-branes in a topologically nontrivial B-field. Adv. Theor. Math. Phys. 4, 127 (2000)zbMATHGoogle Scholar
  17. 17.
    Bouwknegt, P., Mathai, V.: D-branes, B-fields and twisted K-theory. JHEP 0003, 007 (2000)Google Scholar
  18. 18.
    Mickelsson, J.: Gerbes, (twisted) K-theory and the supersymmetric WZW model. http://arxiv.org/abs/hep-th/0206139, 2002
  19. 19.
    Freed, D.S., Hopkins, M.J., Teleman, C.: Twisted K-theory and Loop Group Representations I. http://arxiv.org/abs/math.AT/0312155, 2003
  20. 20.
    Witten, E.: D-branes and K-theory. JHEP 9812, 019 (1998)Google Scholar
  21. 21.
    Witten, E.: Overview of K-theory applied to strings. Int. J. Mod. Phys. A 16, 693 (2001)CrossRefzbMATHGoogle Scholar
  22. 22.
    Olsen, K., Szabo, R.J.: Constructing D-Branes from K-Theory. Adv. Theor. Math. Phys. 3, 889–1025 (1999)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Dedecker, P.: Sur la cohomologie nonabéliene, I and II. Can. J. Math 12, 231–252 (1960) and 15, 84–93 (1963)zbMATHGoogle Scholar
  24. 24.
    Moerdijk, I.: Introduction to the language of stacks and gerbes. http://arxiv.org/abs/math. AT/0212266, 2002
  25. 25.
    Moerdijk, I.: Lie Groupoids, Gerbes, and Non-Abelian Cohomology, K-Theory, 28, 207– 258 (2003)Google Scholar
  26. 26.
    Breen, L., Messing, W.: Differential Geometry of Gerbes. http://arxiv.org/abs/math.AG/0106083, 2001
  27. 27.
    Attal, R.: Combinatorics of Non-Abelian Gerbes with Connection and Curvature. http://arxiv.org/abs/math-ph/0203056, 2002
  28. 28.
    Kalkkinen, J.: Non-Abelian gerbes from strings on a branched space-time. http://arxiv.org/abs/ hep-th/9910048, 1999
  29. 29.
    Baez, J.: Higher Yang-Mills theory. http://arxiv.org/abs/hep-th/0206130, 2002
  30. 30.
    Hofman, C.: Nonabelian 2-Forms. http://arxiv.org/abs/hep-th/0207017, 2002
  31. 31.
    Kobayashi, S., Nomizu, K.: Foundations od Differential Geometry, Volume I. New York: Wiley- Interscience 1996Google Scholar
  32. 32.
    Husemoller, D.: Fibre bundles. 3 rd edition, Graduate Texts in Mathematics 50, Berlin: Springer Verlag, 1994Google Scholar
  33. 33.
    Grothendieck, A.: Séminaire de Géometri Algébrique du Bois-Marie, 1967-69 (SGA 7), I. LNM 288, Berlin-Heidelberg-Newyork Springer-Verlag, 1972Google Scholar
  34. 34.
    Breen, L.: Bitorseurs et cohomologie non abéliene. In: The Grothendieck Festschrift I, Progress in Math. 86, Boston: Birkhäuser 1990, pp. 401–476Google Scholar
  35. 35.
    Brown, K.: Cohomology of Groups. Graduate Texts in Mathematics 50, Berlin: Springer Verlag, 1982Google Scholar
  36. 36.
    Murray, M.K., Stevenson, D.: Bundle gerbes: stable isomorphisms and local theory. J. Lon. Math. Soc 2, 62, 925 (2000)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Paolo Aschieri
    • 1
    • 2
    • 3
    Email author
  • Luigi Cantini
    • 4
    • 5
  • Branislav Jurčo
    • 2
    • 3
  1. 1.Dipartimento di Scienze e Tecnologie AvanzateUniversitá del Piemonte Orientale, and INFNAlessandriaItaly
  2. 2.Max-Planck-Institut für PhysikMünchenGermany
  3. 3.Sektion PhysikUniversität MünchenMünchenGermany
  4. 4.Scuola Normale Superiore & INFN sezione di Pisa, PisaItaly
  5. 5.Department of PhysicsQueen Mary, University of LondonLondonUK

Personalised recommendations