Advertisement

Communications in Mathematical Physics

, Volume 254, Issue 2, pp 289–322 | Cite as

White-Noise and Geometrical Optics Limits of Wigner-Moyal Equation for Wave Beams in Turbulent Media

  • Albert C. FannjiangEmail author
Article

Abstract

Starting with the Wigner distribution formulation for beam wave propagation in Hölder continuous non-Gaussian random refractive index fields we show that the wave beam regime naturally leads to the white-noise scaling limit and converges to a Gaussian white-noise model which is characterized by the martingale problem associated to a stochastic differential-integral equation of the Itô type. In the simultaneous geometrical optics the convergence to the Gaussian white-noise model for the Liouville equation is also established if the ultraviolet cutoff or the Fresnel number vanishes sufficiently slowly. The advantage of the Gaussian white-noise model is that its n-point correlation functions are governed by closed form equations.

Keywords

Geometrical Optic Liouville Equation Scaling Limit Optic Limit Wave Beam 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adler, R.J.: An Introduction to Continuity, Extrema and Related Topics for General Gaussian Processes. Lecture Notes, Monograph Series, vol. 12, Hayward, CA: Institute of Mathematical Statistics, 1990Google Scholar
  2. 2.
    Andrew, L.C.: An analytical model for the refractive index power spectrum and its application to optical scintillations in the atmosphere. J. Mod. Opt. 39, 1849–1853 (1992)Google Scholar
  3. 3.
    Bailly, F., Clouet, J.P., Fouque, J.-P.: Parabolic and Gaussian white noise approximation for wave propagation in random media. SIAM J. Appl. Math. 56(5), 1445–1470 (1996)zbMATHGoogle Scholar
  4. 4.
    Bailly, F., Fouque, J.-P.: High frequency wave propagation in random media. Preprint, 1997Google Scholar
  5. 5.
    Beran, M.J., Oz-Vogt, J.: Imaging through turbulence in the atmosphere. Prog. Optics 33, 319–388 (1994)Google Scholar
  6. 6.
    Berry, M.V.: Semi-classical mechanics in phase space: a study of Wigner’s function. Philos. Trans. R. Soc. A 287, 237–271 (1977)zbMATHGoogle Scholar
  7. 7.
    Blomgren, P., Papanicolaou, G., Zhao, H.: Super Resolution in Time Reversal Acoustics. J. Acoust. Soc. Am. 111, 230–248, (2002)CrossRefGoogle Scholar
  8. 8.
    Davies, E.B.: L1 properties of second order elliptic operators. Bull. London Math. Soc. 17, 417–436 (1985)zbMATHGoogle Scholar
  9. 9.
    Ethier, S.N., Kurtz, T.G.: Markov Processes – Characterization and Convergence. New York: John Wiley and Sons, 1986Google Scholar
  10. 10.
    Falkovich, G., Gawedzki, G., Vergassola, M.: Particles and fields in fluid turbulence. Rev. Mod. Phys. 73, 913–975 (2001)CrossRefGoogle Scholar
  11. 11.
    Fannjiang, A., Solna, K.: Scaling limits for beam wave propagation in atmospheric turbulence. Stoch. Dyn 4(1), 135–151 (2004)CrossRefGoogle Scholar
  12. 12.
    Fannjiang, A., Solna, K.: Propagation and time reversal of wave beams in atmospheric turbulence. SIAM J. Multiscale Modeling Comp., in pressGoogle Scholar
  13. 13.
    Folland, G.B.: Harmonic Analysis in Phase Space. Princeton, VJ: Princeton University Press, 1989Google Scholar
  14. 14.
    Fouque, J.-P.: La convergence en loi pour les processus à valeurs dans un espace nucléaire. Ann. Inst. Henri Poincaré 20, 225–245 (1984)zbMATHGoogle Scholar
  15. 15.
    Gerard, P., Markowich, P.A., Mauser, N.J., Poupaud, F.: Homogenization limits and Wigner transforms. Commun. Pure Appl. Math. L, 323–379 (1997)Google Scholar
  16. 16.
    Hill, R.J.: Models of the scalar spectrum for turbulent advection. J. Fluid Mech. 88, 541–562 (1978)zbMATHGoogle Scholar
  17. 17.
    Ibragimov, I.A., Rozanov, Y.A.: Gaussian Random Processes. New York: Springer-Verlag, 1978Google Scholar
  18. 18.
    Kurtz, T.G.: Semigroups of conditional shifts and approximations of Markov processes. Ann. Prob. 3(4), 618–642 (1975)zbMATHGoogle Scholar
  19. 19.
    Kushner, H.J.:: Approximation and Weak Convergence Methods for Random Processes, with Applications to Stochastic Systems Theory. Cambridge, Massachusetts: MIT Press, 1984Google Scholar
  20. 20.
    Lions, P.L., Paul, T.: Sur les mesures de Wigner. Rev. Mat. Iberoamericana 9, 553–618 (1993)zbMATHGoogle Scholar
  21. 21.
    Monin, A.S., Yaglom, A.M.: Statistical Fluid Mechanics, Vol. 1 &2. Cambridge, MA: MIT Press, 1975Google Scholar
  22. 22.
    Manning, R.M.: Stochastic Electromagnetic Image Propagation and Adaptive Compensation. New York: McGraw-Hill, 1993Google Scholar
  23. 23.
    Papanicolaou, G., Ryzhik, L., Solna, K. : The parabolic approximation and time reversal. Matem. Contemp. 23, 139–159 (2002)zbMATHGoogle Scholar
  24. 24.
    Strohbehn, J.W.: Laser Beam Propagation in the Atmosphere. Berlin: Springer-Verlag, 1978Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of California at DavisDavisUSA

Personalised recommendations