Communications in Mathematical Physics

, Volume 254, Issue 2, pp 343–359 | Cite as

Conjugacies for Tiling Dynamical Systems

  • Charles Holton
  • Charles Radin
  • Lorenzo Sadun


We consider tiling dynamical systems and topological conjugacies between them. We prove that the criterion of being of finite type is invariant under topological conjugacy. For substitution tiling systems under rather general conditions, including the Penrose and pinwheel systems, we show that substitutions are invertible and that conjugacies are generalized sliding block codes.


Neural Network Dynamical System Statistical Physic Complex System General Condition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baake, M., Schlottmann, M., Jarvis, P.D.: Quasiperiodic tilings with tenfold symmetry and equivalence with respect to local derivability. J. Physics A 24, 4637–4654 (1991)zbMATHGoogle Scholar
  2. 2.
    Clark, A., Sadun, L.: When size matters: subshifts and their related tiling spaces. Ergodic Theory & Dynamical Systems 23, 1043–1057 (2001)Google Scholar
  3. 3.
    Goodman-Strauss, C.: Matching rules and substitution tilings. Ann. Math. 147, 181–223 (1998)zbMATHGoogle Scholar
  4. 4.
    Lind, D., Marcus, B.: An Introduction to Symbolic Dynamics and Coding, Cambridge: Cambridge University Press, 1995Google Scholar
  5. 5.
    Mossé, B.: Puissances de mots et reconnaisabilité des point fixes d’une substitution. Theor. Comp. Sci. 99(2), 327–334 (1992)CrossRefGoogle Scholar
  6. 6.
    Mozes, S.: Tilings, substitution systems and dynamical systems generated by them. J. d’Analyse Math. 53, 139–186 (1989)zbMATHGoogle Scholar
  7. 7.
    Ormes, N., Radin, C., Sadun, L.: A homeomorphism invariant for substitution tiling spaces. Geometriae Dedicata 90, 153–182 (2002)CrossRefzbMATHGoogle Scholar
  8. 8.
    Petersen, K.: Factor maps between tiling dynamical systems. Forum Math. 11, 503–512 (1999)zbMATHGoogle Scholar
  9. 9.
    Priebe, N., Solomyak, B.: Characterization of planar pseudo-self-similar tilings. Discrete Comput. Geom. 26, 289–306 (2001)zbMATHGoogle Scholar
  10. 10.
    Radin, C.: The pinwheel tilings of the plane. Ann. Math. 139, 661–702 (1994)zbMATHGoogle Scholar
  11. 11.
    Radin, C.: Orbits of orbs: sphere packing meets Penrose tilings. Amer. Math. Monthly 111, 137–149 (2004)zbMATHGoogle Scholar
  12. 12.
    Radin, C., Sadun, L.: An algebraic invariant for substitution tiling systems. Geometriae Dedicata 73, 21–37 (1998)CrossRefzbMATHGoogle Scholar
  13. 13.
    Radin, C., Sadun, L.: Isomorphism of hierarchical structures. Ergodic Theory Dynam. Systems 21, 1239–1248 (2001)CrossRefzbMATHGoogle Scholar
  14. 14.
    Radin, C., Wolff, M.: Space tilings and local isomorphism. Geometriae Dedicata 42, 355–360 (1992)zbMATHGoogle Scholar
  15. 15.
    Solomyak, B.: Nonperiodicity implies unique composition for self-similar translationally finite tilings. Discrete Comput. Geom. 20, 265–279 (1998)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Charles Holton
    • 1
  • Charles Radin
    • 1
  • Lorenzo Sadun
    • 1
  1. 1.Department of MathematicsUniversity of TexasAustinUSA

Personalised recommendations