Communications in Mathematical Physics

, Volume 252, Issue 1–3, pp 359–391 | Cite as

ABCD of Instantons

  • Nikita NekrasovEmail author
  • Sergey Shadchin


We solve Open image in new window = 2 supersymmetric Yang-Mills theories for an arbitrary classical gauge group, i.e. SU(N), SO(N), Sp(N). In particular, we derive the prepotential of the low-energy effective theory, and the corresponding Seiberg-Witten curves. We manage to do this without resolving singularities of the compactified instanton moduli spaces.


Neural Network Statistical Physic Complex System Nonlinear Dynamics Modulus Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Atiyah, M.F., Hitchin, N.J., Drinfeld, V.G., Manin, Yu.I.: Construction of instantons. Phys. Lett. 65A, 185 (1978)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Bourbaki, N.: Groupes et algèbres de Lie. Vol. 4, Paris: Masson, 1981Google Scholar
  3. 3.
    Christ, N.H., Weinberg, E.J., Stanton, N.K.: General self-dual Yang-Mills solition. Phys. Rev. D 18(6), 2013 (1978)CrossRefGoogle Scholar
  4. 4.
    Corrigan, E., Goddard, P.: Construction of instantons and monopole solutions and reciprocity. Ann. Phys. 154, 253 (1984)MathSciNetzbMATHGoogle Scholar
  5. 5.
    D’Hoker, E., Krichever, I.M., Phong, D.H.: The effective prepotential of Open image in new window = 2 supersymmetric SU(Nc) gauge theories. Nucl. Phys. B489, 179–210 (1997)Google Scholar
  6. 6.
    D’Hoker, E., Krichever, I.M., Phong, D.H.: The effective prepotential of Open image in new window = 2 supersymmetric SO(Nc) and Sp(Nc) gauge theories. Nucl. Phys. B489, 211 (1997); Agyres, P.C., Shapere, A.D.: The Vacuum Structure of N=2 Super-QCD with Classical Gauge Groups. Nucl. Phys. B461, 437–459 (1996)Google Scholar
  7. 7.
    D’Hoker, E., Phong, D.H.: Lectures on supersymmetric Yang-Mills theory and integrable systems., 1999
  8. 8.
    Dorey, N., Hollowood, T.J., Khoze, V.V., Mattis, M.P.: The calculus of many instatons. Phys. Rept. 371, 231–459 (2002)CrossRefzbMATHGoogle Scholar
  9. 9.
    Dorey, N., Khoze, V.V., Mattis, M.P.: Multi-instaton calculus in Open image in new window = 2 supersymmetric gauge theory. Phys. Rev. D54, 2921 (1996)Google Scholar
  10. 10.
    Duistermaat, J.J., Heckman, G.J.: On the variation in the cohomology in the symplectic form of the reduced phase space. Invent. Math. 69, 259 (1982) Atiyah, M., Bott, R.: Topology 23(1), 1 (1984)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Witten, E.: J. Diff. Geom. 17, 661–692 (1982); Alvarez-Gaumé, L.: Commun. Math. Phys. 90, 161–173 (1983); Windey, P.: Acta Phys. Polon. B15, 435, (1984); Atiyah, M.: Astérisque 2, 43–60 (1985); Morozov, A., Niemi, A., Palo, K.: 377, 295–338 (1992); Baulieu, L., Losev, A., Nekrasov, N.: Nucl. Phys. B522, 82–104 (1998)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Innes, I.P., Lozano, C., Naculich, G., Schnitzer, H.J.: Elliptic models and M-theory. Nucl. Phys. B576, 313–346 (2000)Google Scholar
  13. 13.
    Katz, S., Klemm, A., Vafa, C.: Geometric Engineering of Quantum Field Theories. Nucl. Phys. B497, 173–195 (1997)Google Scholar
  14. 14.
    Klemm, A., Lerche, W., Theisen, S., Yankielowisz, S.: Phys. Lett. B344, 169–175 (1995); Argyres, P., Faraggi, A.: Phys. Rev. Lett. 74, 3931–3934 (1995); Hannany, A., Oz, Y.: Nucl. Phys. B452, 283–312 (1995); Gorsky, A., Marshakov, A., Mironov, A., Morozov, A.: Nucl. Phys. B527, 690–716 (1998)CrossRefGoogle Scholar
  15. 15.
    Krauth, W., Staudacher, M.: Yang-Mills Integrals for Orthogonal, Symplectic and Exceptional Groups. Nucl. Phys. B584, 641–655 (2000) Krauth, W., Staudacher, M.: Finite Yang-Mills integrals. Phys. Lett. B435, 350–355 (1998)Google Scholar
  16. 16.
    Losev, A., Marshakov, A., Nekrasov, N.: Small instantons, little strings and free fermions., 2003
  17. 17.
    Mariño, M., Wyllard, N.: A note on instanton counting for Open image in new window = 2 gauge theories with classical gauge groups. JHEP 0405, 021 (2004)CrossRefGoogle Scholar
  18. 18.
    Moore, G., Nekrasov, N., Shatashvili, S.: D-particle bound states and generalized instantons. Commun. Math. Phys. 209, 77–95 (2000)CrossRefMathSciNetzbMATHGoogle Scholar
  19. 19.
    Moore, G., Nekrasov, N., Shatashvili, S.: Integrating over Higgs branches. Commun. Math. Phys. 209, 97–121 (2000)CrossRefMathSciNetzbMATHGoogle Scholar
  20. 20.
    Nekrasov, N.: Five Dimensional Gauge Theories and Relativistic Integrable Systems. Nucl. Phys. B531, 323–344 (1998)Google Scholar
  21. 21.
    Nekrasov, N.: Seiberg-Witten prepotential from instanton counting. Adv. Theor. Math. Phys. 7, 831–864 (2004)Google Scholar
  22. 22.
    Nekrasov, N., Okounkov, A.: Seiberg-Witten theory and random partitions., 2003
  23. 23.
    Osborn, H.: Solutions of the Dirac equation for general instanton solutions. Nucl. Phys. B140, 45 (1978)Google Scholar
  24. 24.
    Osborn, H.: Semiclassical functional integrals for selfdual gauge fields. Ann. Phys. 135, 373 (1981)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Hitchin, N.J., Karlhede, A., Lindstrom, U., Rocek, M.: Hyperkähler metrics and supersymmetry. Commun. Math. Phys. 108, 535 (1987)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Seiberg, N.: Supersymmetry and nonperturbative beta functions. Phys. Lett. 206B, 75 (1988)CrossRefMathSciNetGoogle Scholar
  27. 27.
    Seiberg, N., Witten, E.: Electric-magnetic duality, monopole condensation, and confinement in Open image in new window = 2 supersymmetric Yang-Mills theory. Nucl. Phys. B426, 19 (1994)Google Scholar
  28. 28.
    Vainshtein, A.I., Zakharov, V.I., Novikov, V.A., Shifman, M.A.: ABC’S of instantons. Revised and updated version published in ITEP Lectures on Particle Physics and Field theory, Vol. 1 Singapore: World Scientific, 1999, pp. 201–299; Sov. Phys. Usp. 24, 195 (1982)Google Scholar
  29. 29.
    Wess, J., Bagger, J.: Supersymmetry and supergravity. Princeton, NJ: Princeton Univercity Press, 1983Google Scholar
  30. 30.
    Witten, E.: Topological quantum field theory. Commun. Math. Phys. 117, 353 (1988)MathSciNetzbMATHGoogle Scholar
  31. 31.
    Witten, E.: Solutions of four-dimensional field theories via M-theory. Nucl. Phys. B500, 3 (1997); Klemm, A., Lerche, W., Mayr, P., Vafa, C., Warner, N.: Self-Dual Strings and N = 2 Supersymmetric Field Theory. Nucl. Phys. B477, 746–766 (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  1. 1.Institut des Hautes Etudes ScientifiquesBures-sur-YvetteFrance

Personalised recommendations