Advertisement

Communications in Mathematical Physics

, Volume 252, Issue 1–3, pp 275–323 | Cite as

Unitary and Complex Matrix Models as 1-d Type 0 Strings

  • I.R. Klebanov
  • J. Maldacena
  • N. Seiberg
Article

Abstract

We propose that the double scaling behavior of the unitary matrix models, and that of the complex matrix models, is related to type 0B and 0A fermionic string theories. The particular backgrounds involved correspond to ĉ < 1 matter coupled to super-Liouville theory. We examine in detail the ĉ = 0 or pure supergravity case, which is related to the double scaling limit around the Gross-Witten transition, and find that reversing the sign of the Liouville superpotential interchanges the 0A and 0B theories. We also find smooth transitions between weakly coupled string backgrounds with D-branes, and backgrounds with Ramond-Ramond fluxes only. Finally, we discuss matrix models with multicritical potentials that are conjectured to correspond to 0A/0B string theories based on (2,4k) super-minimal models.

Keywords

Neural Network Statistical Physic Complex System String Theory Nonlinear Dynamics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    McGreevy, J., Verlinde, H.: Strings from tachyons: The c = 1 matrix reloaded. JHEP 0312, 054 (2003)CrossRefGoogle Scholar
  2. 2.
    Martinec, E.J.: The annular report on non-critical string theory. http://arxiv.org/abs/hep-th/0305148, 2003
  3. 3.
    Klebanov, I.R., Maldacena, J., Seiberg, N.: D-brane decay in two-dimensional string theory. JHEP 0307, 045 (2003)CrossRefGoogle Scholar
  4. 4.
    McGreevy, J., Teschner, J., Verlinde, H.: Classical and quantum D-branes in 2D string theory. JHEP 0401, 039 (2003)Google Scholar
  5. 5.
    Schomerus, V.: Rolling tachyons from Liouville theory. JHEP 0311, 043 (2003)CrossRefGoogle Scholar
  6. 6.
    Alexandrov, S.Y., Kazakov, V.A., Kutasov, D.: Non-Perturbative Effects in Matrix Models and D-branes. JHEP 0309, 057 (2003)CrossRefGoogle Scholar
  7. 7.
    Sen, A.: Open-Closed Duality: Lessons from the Matrix Model. Mod. Phys. Lett. A 19, 841–854 (2004)CrossRefGoogle Scholar
  8. 8.
    Klebanov, I.R.: String theory in two-dimensions. http://arxiv.org/abs/hep-th/9108019, Lectures at 1991 ICTP Spring School, Trieste, Italy, 1991
  9. 9.
    Ginsparg, P., Moore, G.W.: Lectures On 2-D Gravity And 2-D String Theory. TASI 1992, http://arxiv.org/abs/hep-th/9304011, 1993
  10. 10.
    Di Francesco, P., Ginsparg, P., Zinn-Justin, J.: 2-D Gravity and random matrices. Phys. Rept. 254, 1 (1995)CrossRefGoogle Scholar
  11. 11.
    Jevicki, A.: Developments in 2-d string theory. http://arxiv.org/abs/hep-th/9309115, 1993
  12. 12.
    Polchinski, J.: What is String Theory. http://arxiv.org/abs/hep-th/9411028, 1994
  13. 13.
    Zamolodchikov, A.B., Zamolodchikov, A.B.: Liouville field theory on a pseudosphere. http://arxiv.org/abs/hep-th/0101152, 2001
  14. 14.
    Gross, D.J., Miljkovic, N.: A Nonperturbative Solution of D = 1 String Theory. Phys. Lett. B 238, 217 (1990); Brezin, E., Kazakov, V.A., Zamolodchikov, A.B.: Scaling Violation in a Field Theory of Closed Strings in One Physical Dimension. Nucl. Phys. B 338, 673 (1990); Ginsparg, P., Zinn-Justin, J.: 2-D Gravity + 1-D Matter. Phys. Lett. B 240, 333 (1990)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Kazakov, V.A., Migdal, A.A.: Recent Progress In The Theory Of Noncritical Strings. Nucl. Phys. B 311, 171 (1988)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Takayanagi, T., Toumbas, N.: A Matrix Model Dual of Type 0B String Theory in Two Dimensions. JHEP 0307, 064 (2003)CrossRefGoogle Scholar
  17. 17.
    Douglas, M.R., Klebanov, I.R., Kutasov, D., Maldacena, J., Martinec, E., Seiberg, N.: A new hat for the c = 1 matrix model. http://arxiv.org/abs/hep-th/0307195, 2003
  18. 18.
    Gaiotto, D., Itzhaki, N., Rastelli, L.: On the BCFT description of holes in the c = 1 matrix model. Phys. Lett. B575, 111–114 (2003)Google Scholar
  19. 19.
    Gutperle, M., Kraus, P.: D-brane dynamics in the c = 1 matrix model. Phys. Lett. D69, 066005 (2004)Google Scholar
  20. 20.
    Kapustin, A.: Noncritical superstrings in a Ramond-Ramond background. JHEP 0310, 037 (2003)Google Scholar
  21. 21.
    Giveon, A., Konechny, A., Pakman, A., Sever, A.: Type 0 strings in a 2-d black hole. JHEP 0310, 025 (2003)CrossRefGoogle Scholar
  22. 22.
    Karczmarek, J.L., Strominger, A.: Matrix cosmology. JHEP 0404, 025 (2003)Google Scholar
  23. 23.
    DeWolfe, O., Roiban, R., Spradlin, M., Volovich, A., Walcher, J.: On the S-matrix of type 0 string theory. JHEP 0311, 012 (2003)CrossRefGoogle Scholar
  24. 24.
    Gross, D.J., Witten, E.: Possible Third Order Phase Transition In The Large N Lattice Gauge Theory. Phys. Rev. D 21, 446 (1980)CrossRefGoogle Scholar
  25. 25.
    Periwal, V., Shevitz, D.: Unitary Matrix Models As Exactly Solvable String Theories. Phys. Rev. Lett. 64, 1326 (1990); Periwal, V., Shevitz, D.: Exactly Solvable Unitary Matrix Models: Multicritical Potentials And Correlations. Nucl. Phys. B 344, 731 (1990)CrossRefGoogle Scholar
  26. 26.
    Nappi, C.R.: Painleve-II And Odd Polynomials. Mod. Phys. Lett. A 5, 2773 (1990)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Crnkovic, C., Douglas, M.R., Moore, G.W.: Physical Solutions For Unitary Matrix Models. Nucl. Phys. B 360, 507 (1991)CrossRefMathSciNetGoogle Scholar
  28. 28.
    Crnkovic, C., Douglas, M.R., Moore, G.W.: Loop equations and the topological phase of multi-cut matrix models. Int. J. Mod. Phys. A 7, 7693 (1992)MathSciNetzbMATHGoogle Scholar
  29. 29.
    Hollowood, T.J., Miramontes, L., Pasquinucci, A., Nappi, C.: Hermitian versus anti-Hermitian one matrix models and their hierarchies. Nucl. Phys. B 373, 247 (1992)CrossRefMathSciNetGoogle Scholar
  30. 30.
    Brower, R.C., Deo, N., Jain, S., Tan, C.I.: Symmetry breaking in the double well Hermitian matrix models. Nucl. Phys. B 405, 166 (1993)CrossRefMathSciNetzbMATHGoogle Scholar
  31. 31.
    Morris, T.R.: 2-D Quantum Gravity, Multicritical Matter And Complex Matrices. FERMILAB- PUB-90-136-TGoogle Scholar
  32. 32.
    Dalley, S., Johnson, C.V., Morris, T.: Multicritical complex matrix models and nonperturbative 2-D quantum gravity. Nucl. Phys. B 368, 625 (1992)CrossRefMathSciNetGoogle Scholar
  33. 33.
    Dalley, S., Johnson, C.V., Morris, T.R., Watterstam, A.: Unitary matrix models and 2-D quantum gravity. Mod. Phys. Lett. A 7, 2753 (1992)MathSciNetzbMATHGoogle Scholar
  34. 34.
    Lafrance, R., Myers, R.C.: Flows For Rectangular Matrix Models. Mod. Phys. Lett. A 9, 101 (1994)MathSciNetzbMATHGoogle Scholar
  35. 35.
    Di Francesco, P.: Rectangular Matrix Models and Combinatorics of Colored Graphs. Nucl. Phys. B 648, 461 (2003)CrossRefzbMATHGoogle Scholar
  36. 36.
    Seiberg, N., Witten, E.: UnpublishedGoogle Scholar
  37. 37.
    Fateev, V., Zamolodchikov, A.B., Zamolodchikov, A.B.: Boundary Liouville field theory. I: Boundary state and boundary two-point function. http://arxiv.org/abs/hep-th/0001012, 2000
  38. 38.
    Teschner, J.: Remarks on Liouville theory with boundary. http://arxiv.org/abs/hep-th/0009138, 2000
  39. 39.
    Martinec, E.J., Moore, G.W., Seiberg, N.: Boundary operators in 2-D gravity. Phys. Lett. B 263, 190 (1991)CrossRefMathSciNetGoogle Scholar
  40. 40.
    Teschner, J.: On boundary perturbations in Liouville theory and brane dynamics in noncritical string theories. JHEP 0404, 023 (2004)CrossRefGoogle Scholar
  41. 41.
    Fukuda, T., Hosomichi, K.: Super Liouville theory with boundary. Nucl. Phys. B 635, 215 (2002)CrossRefMathSciNetzbMATHGoogle Scholar
  42. 42.
    Brézin, E., Kazakov, V.A.: Exactly Solvable Field Theories Of Closed Strings. Phys. Lett. B 236, 144 (1990)CrossRefMathSciNetGoogle Scholar
  43. 43.
    Douglas, M.R., Shenker, S.H.: Strings In Less Than One-Dimension. Nucl. Phys. B 335, 635 (1990)CrossRefMathSciNetGoogle Scholar
  44. 44.
    Gross, D.J., Migdal, A.A.: Nonperturbative Two-Dimensional Quantum Gravity. Phys. Rev. Lett. 64, 127 (1990)CrossRefMathSciNetzbMATHGoogle Scholar
  45. 45.
    Gopakumar, R., Vafa, C.: On the gauge theory/geometry correspondence. Adv. Theor. Math. Phys. 3, 1415 (1999)MathSciNetzbMATHGoogle Scholar
  46. 46.
    Klebanov, I.R., Strassler, M.J.: Supergravity and a confining gauge theory: Duality cascades and chiSB-resolution of naked singularities. JHEP 0008, 052 (2000)Google Scholar
  47. 47.
    Maldacena, J.M., Nunez, C.: Towards the large N limit of pure N = 1 super Yang Mills. Phys. Rev. Lett. 86, 588 (2001)CrossRefMathSciNetGoogle Scholar
  48. 48.
    Vafa, C.: Superstrings and topological strings at large N. J. Math. Phys. 42, 2798 (2001)CrossRefMathSciNetzbMATHGoogle Scholar
  49. 49.
    Cachazo, F., Intriligator, K.A., Vafa, C.: A large N duality via a geometric transition. Nucl. Phys. B 603, 3 (2001)CrossRefMathSciNetzbMATHGoogle Scholar
  50. 50.
    Dalley, S., Johnson, C.V., Morris, T.: Nonperturbative two-dimensional quantum gravity. Nucl. Phys. B 368, 655 (1992)CrossRefMathSciNetGoogle Scholar
  51. 51.
    Seiberg, N.: Notes On Quantum Liouville Theory And Quantum Gravity. Prog. Theor. Phys. Suppl. 102, 319 (1990)MathSciNetzbMATHGoogle Scholar
  52. 52.
    Di Francesco, P., Saleur, H., Zuber, J.B.: Generalized Coulomb Gas Formalism For Two-Dimensional Critical Models Based On SU(2) Coset Construction. Nucl. Phys. B 300, 393 (1988)CrossRefGoogle Scholar
  53. 53.
    Bershadsky, M., Klebanov, I.R.: Partition functions and physical states in two-dimensional quantum gravity and supergravity. Nucl. Phys. B 360, 559 (1991)CrossRefMathSciNetGoogle Scholar
  54. 54.
    Bershadsky, M., Klebanov, I.R.: Genus One Path Integral In Two-Dimensional Quantum Gravity. Phys. Rev. Lett. 65, 3088 (1990)CrossRefGoogle Scholar
  55. 55.
    Witten, E.: On The Structure Of The Topological Phase Of Two-Dimensional Gravity. Nucl. Phys. B 340, 281 (1990)CrossRefMathSciNetGoogle Scholar
  56. 56.
    Kutasov, D., Seiberg, N.: Number Of Degrees Of Freedom, Density Of States And Tachyons In String Theory And Cft. Nucl. Phys. B 358, 600 (1991)CrossRefMathSciNetGoogle Scholar
  57. 57.
    Gelfand, I.M., Dikii, L.A.: Asymptotic Behavior Of The Resolvent Of Sturm-Liouville Equations And The Algebra Of The Korteweg-De Vries Equations. Russ. Math. Surveys 30, 77 (1975) [Usp. Mat. Nauk bf 30, 67 (1979)]zbMATHGoogle Scholar
  58. 58.
    Johnson, C.V., Morris, T.R., Watterstam, A.: Global KdV flows and stable 2-D quantum gravity. Phys. Lett. B 291, 11 (1992)CrossRefMathSciNetGoogle Scholar
  59. 59.
    Minahan, J.A.: Matrix models with boundary terms and the generalized Painleve II equation. Phys. Lett. B 268, 29 (1991); Minahan, J.A.: Schwinger-Dyson equations for unitary matrix models with boundaries. Phys. Lett. B 265, 382 (1991)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • I.R. Klebanov
    • 1
  • J. Maldacena
    • 2
  • N. Seiberg
    • 2
  1. 1.Joseph Henry LaboratoriesPrinceton UniversityPrincetonUSA
  2. 2.Institute for Advanced StudyPrincetonUSA

Personalised recommendations