Skip to main content
Log in

Janossy Densities of Coupled Random Matrices

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We explicitly calculate the Janossy densities for a special class of finite determinantal random point processes with several types of particles introduced by Prähofer and Spohn and, in the full generality, by Johansson in connection with the analysis of polynuclear growth models. The results of this paper generalize the theorem we proved earlier with Borodin about the Janossy densities in biorthogonal ensembles. In particular our results can be applied to ensembles of random matrices coupled in a chain which provide a very important example of determinantal ensembles we study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adler, A., van Moerbeke, P.: The spectrum of coupled random matrices. Ann. Math. 149, 921–976 (1999)

    MathSciNet  MATH  Google Scholar 

  2. Borodin, A., Olshanski, G.: Distribution on partitions, point processes, and the hypergeometric kernel. Commun. Math. Phys. 211, 335–358 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. Borodin, A.: Biorthogonal ensembles. Nucl. Phys. B 536, 704–732, (1999)

    Article  MathSciNet  MATH  Google Scholar 

  4. Borodin, A., Soshnikov, A.: Janossy densities I. Determinantal ensembles. J. Stat. Phys. 113, No. 3/4, 595–610, (2003)

    Google Scholar 

  5. Burton, R.M., Pemantle, R.: Local characteristics, entropy and limit theorems for spanning trees and domino tilings via transfer-impendances. Ann. Probab. 21, 1329–1371 (1993)

    MathSciNet  MATH  Google Scholar 

  6. Deift, P.: Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert Approach. Courant Lecture Notes in Mathematics, Vol. 3, New York, 1999

  7. Daley, D.J., Vere-Jones, D.: An introduction to the Theory of Point Processes. New York: Springer-Verlag, 1988

  8. Eynard, B.: Eigenvalue distribution of large random matrices, from one matrix to several coupled matrices. Nucl. Phys. B 506, 633–664 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  9. Eynard, B., Mehta, M.L.: Matrices coupled in a chain: I. Eigenvalue correlations. J. Phys. A 31, 4449–4456 (1998)

    Article  MATH  Google Scholar 

  10. Ferrari, P.: Polynuclear growth on a flat substrate and edge scaling of GOE eigenvalues. http://arxiv.org/abs/math-ph/0402053, 2004

  11. Ferrari, P., Spohn, H.: Step fluctuations for a faceted crystal. J. Stat. Phys. 113(1–2), 1–46, (2003)

    Google Scholar 

  12. Ferrai, P., Prähofer, M., Spohn, H.: Stochastic growth in one dimensionand Gaussian multi-matrix models. http://arxiv.org/abs/math-ph/0310053, 2003

  13. Forrester, P.J.: Exact solution of the lock step model of vicious walkers. J. Phys. A 23, 1259–1273 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gessel, I., Viennot, G.: Binomial determinants, paths, and hook length formulae. Adv. Math. 58, 300–321 (1985)

    MathSciNet  MATH  Google Scholar 

  15. Guionnet, A.: First order asymptotics of matrix integrals; a rigorous approach towards the understanding of matrix models. Commun. Math. Phys. 244, 527–569 (2003)

    Article  MATH  Google Scholar 

  16. Godsil, C.D.: Algebraic Combinatorics. New York: Chapman & Hall, 1993

  17. Harnad, J.: Janossy densities, multimatrix spacing distributions and Fredholm resolvents. IMRN 48, 2599–2609 (2004)

    Article  Google Scholar 

  18. Janossy, L.: On the absorption of nucleon cascade. Proc. Roy. Irish Acad. Sci. Sect. A 53, 181–188 (1950)

    MATH  Google Scholar 

  19. Johansson, K.: Discrete polynuclear growth and determinantal processes. Commun. Math. Phys. 242(1–2), 277–329 (2003)

    Google Scholar 

  20. Johansson, K.: Shape fluctuations and random matrices. Commun. Math. Phys. 209, 437–476 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  21. K.Johansson, Discrete polynomial ensembles and the Plancherel measure. Ann. Math. 153, 259–296 (2001)

    Google Scholar 

  22. Johansson, K.: Non-intersecting paths, random tilings and random matrices. Probab. Theory Relat. Fields 123, 225–280, (2002)

    Article  MathSciNet  MATH  Google Scholar 

  23. Johansson, K.: Universality of the Local Spacing Distribution in Certain Ensembles of Hermitian Wigner Matrices. Commun. Math. Phys. 215, 683–705 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  24. Karlin, S., McGregor, G.: Coincidence probabilities. Pacific J. Math. 9, 1141–1164 (1959)

    MATH  Google Scholar 

  25. Lyons, R.: Determinantal probability measures. Publ. Math. Inst. Hautes Etudes Sci. 98, 167–212 (2003)

    Article  Google Scholar 

  26. Mahoux, G., Mehta, M.L., Normand, J-M.: Matrices coupled in a chain: II. Spacing functions. J. Phys. A 31, 4457–4464 (1998)

    Article  MATH  Google Scholar 

  27. Mehta, M.L.: Random Matrices. New York: Academic Press, 1991

  28. Muttalib, K.A.: Random matrix models with additional interactions. J. Phys. A 285, L159 (1995)

  29. Nagao, T., Katori, M., Tanemura, H.: Dynamical correlations among vicious random walkers. Phys. Lett. A 307, 29–33 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  30. Olshanski, G.: Pfaffian ensembles. Unpublished note, 2002

  31. Okounkov, A., Reshetikhin, N.: Correlation function of Schur process with application to local geometry of a random 3-dimensional Young diagram. J. Am. Math. Soc. 16(3), 581–603 (2003)

    Article  MATH  Google Scholar 

  32. Prähofer, M., Spohn, H.: Scale Invariance of the PNG droplet and the Airy process. J. Stat. Phys. 108(5/6), 1071–1106 (2002)

    Google Scholar 

  33. Rains, E.: Correlation functions for symmetrized increasing subsequences. http://arxiv.org./abs/ math.CO/0006097, 2000

  34. Reed, M., Simon, B.: Methods of Modern Mathematical Physics. Vols. I-IV, New York: Academic Press, 1975–1980

  35. Simon, B.: Trace Ideals and Their Applications. New York: Cambridge Univ. Press, 1979

  36. Soshnikov, A.: Janossy densities II. Pfaffian ensembles. J. Stat. Phys. 113(3/4), 611–622 (2003)

    Google Scholar 

  37. Soshnikov, A.: Determinantal random point fields. Russ. Math. Surv. 55, 923–975 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  38. Srinvasan, S.K.: Stochastic Theory and Cascade Processes. New York: American Elsevier, 1969

  39. Stanley, R.P.: Enumerative Combinatorics. Vol. 1, Cambridge: Cambridge Univ. Press, 1997

  40. Tracy, C.A., Widom, H.: Correlation functions, cluster functions, and spacing distributions for random matrices. J. Stat. Phys. 92(5/6), 809–835 (1998)

    Google Scholar 

  41. Widom, H.: On the relation between orthogonal, symplectic and unitary ensembles. J. Stat. Phys. 94(3/4), 347–363 (1999)

    Google Scholar 

  42. Wieczorek, W.: Distribution of the largest eigenvalues of the Levi-Smirnov ensemble. Acta Physica Polonica B 35(2), 541–550 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Soshnikov.

Additional information

Communicated by H. Spohn

Research was supported in part by the Sloan Research Fellowship and the NSF grant DMS-0103948.

Acknowledgements It is a pleasure to thank the referees for useful suggestions and John Harnad for letting me know about the preprint [17].

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soshnikov, A. Janossy Densities of Coupled Random Matrices. Commun. Math. Phys. 251, 447–471 (2004). https://doi.org/10.1007/s00220-004-1177-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-004-1177-5

Keywords

Navigation