Skip to main content
Log in

Quantum Dynamical Semigroups for Diffusion Models with Hartree Interaction

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider a class of evolution equations in Lindblad form, which model the dynamics of dissipative quantum mechanical systems with mean-field interaction. Particularly, this class includes the so-called Quantum Fokker-Planck-Poisson model. The existence and uniqueness of global-in-time, mass preserving solutions is proved, thus establishing the existence of a nonlinear conservative quantum dynamical semigroup. The mathematical difficulties stem from combining an unbounded Lindblad generator with the Hartree nonlinearity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alicki, R.: Invitation to quantum dynamical semigroups. In: P. Garbaczewski, R. Olkiewicz (eds.), Dynamics of Dissipation, Lecture Notes in Physics 597, Berlin-Heidelberg-NewYork: Springer, 2002

  2. Alicki, R., Fannes, M.: Quantum dynamical systems. Oxford: Oxford University Press, 2001

  3. Alicki, R., Messer, J.: Nonlinear quantum dynamical semigroups for many-body open systems. J. Stat. Phys. 32(3), 299–312 (1983)

    MATH  Google Scholar 

  4. Arnold, A., Carrillo, J. A., Dhamo, E.: On the periodic Wigner-Poisson-Fokker-Planck system. J. Math. Anal. Appl. 275, 263–276 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Arnold, A.: Self-Consistent Relaxation-Time Models in Quantum Mechanics. Comm. PDE 21(3/4), 473–506 (1996)

    Google Scholar 

  6. Arnold, A.: The relaxation-time von Neumann-Poisson equation. In: O. Mahrenholtz, R. Mennicken (eds.), Proceedings of ICIAM 95, Hamburg (1995), ZAMM, 76 S2, 1996, pp. 293–296

  7. Arnold, A., Lopez, J. L., Markowich, P. A., Soler, J.: Analysis of Quantum Fokker-Planck Models: A Wigner Function Approach. To appear in Rev. Mat. Iberoam., 2004

  8. Bardos, C., Mauser, N.: The weak coupling limit for systems of N→∞ quantum particles. State of the art and applications. To appear In: Proceedings Congrés National d’Analyse Numérique, 2003

  9. Batt, J.: N-particle approximation to the nonlinear Vlasov-Poisson system. Nonlinear Anal. 47(3), 1445–1456 (2001)

    Article  Google Scholar 

  10. Bouchut, F.: Existence and uniqueness of a global smooth solution for the Vlasov-Poisson-Fokker-Planck system in three dimensions. J. Funct. Anal. 111(1), 239–258 (1993)

    Article  MATH  Google Scholar 

  11. Bove, A., Da Prato, G., Fano, G.: On the Hartree-Fock time-dependent problem. Commun. Math. Phys. 49 25–33 (1976)

  12. Braun, W., Hepp, K.: The Vlasov dynamics and its fluctuations in the 1/N limit of interacting classical particles. Commun. Math. Phys. 56(2), 101–113 (1977)

    Google Scholar 

  13. Breuer, H.P., Petruccione, F.: Concepts and methods in the theory of open quantum systems. In: F. Benatti, R. Floreanini (eds.), Irreversible Quantum Dynamics, Lecture Notes in Physics 622, Berlin-Heidelberg-NewYork: Springer, 2003

  14. Caldeira, A. O., Leggett, A. J.: Path integral approach to quantum Brownian motion. Physica A 121 587–616 (1983)

    Google Scholar 

  15. Castella, F., Erdös, L., Frommlet, F., Markowich, P.: Fokker-Planck equations as Scaling Limit of Reversible Quantum Systems. J. Stat. Phys. 100(3/4), 543–601 (2000)

    Google Scholar 

  16. Chebotarev, A.M., Garcia, J.C., Quezada, R.B.: Interaction representation method for Markov master equations in quantum optics. In: ANESTOC, Proc. of the 4th int. workshop, Trends in Math., Stochastic Analysis and Math. Physics, Basef-Boston: Birkhäuser, 2001

  17. Chebotarev, A. M., Fagnola, F.: Sufficient Conditions for Conservativity of Quantum Dynamical Semigroups. J. Funct. Anal. 118, 131–153 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  18. Davies, E. B.: Quantum Theory of Open Systems. London-NewYork: Academic Press, 1976

  19. Davies, E. B.: Quantum dynamical semigroups and the neutron diffusion equation. Rep. Math. Phys. 11(2), 169–188 (1977)

    Article  MATH  Google Scholar 

  20. Dekker, H.: Quantization of the linearly damped harmonic oscillator. Phys. Rev. A 16-5, 2126–2134 (1977)

    Google Scholar 

  21. Desvillettes, L., Villani, C.: On the trend to global equilibrium in spatially inhomogeneous entropy-dissipating systems: the linear Fokker-Planck equation. Comm. Pure Appl. Math. 54(1), 1–42 (2001)

    Article  MATH  Google Scholar 

  22. Degond, P., Ringhofer, C.: Quantum moment hydrodynamics and the entropy principle. J. Stat. Phys. 112(3), 587–628 (2003)

    Article  MATH  Google Scholar 

  23. Diósi, L.: On high-temperature Markovian equations for quantum Brownian motion. Europhys. Lett. 22, 1–3 (1993)

    Google Scholar 

  24. Diósi, L.: Caldeira-Leggett master equation and medium temperatures. Physica A 199, 517–526 (1993)

    Google Scholar 

  25. Domokos, P., Horak, P., Ritsch, H.: Semiclassical theory of cavity-assisted atom cooling. J. Phys. B 34, 187–201 (2001)

    Article  Google Scholar 

  26. Dressler, K.: Steady states in plasma physics – the Vlasov-Fokker-Planck equation. Math. Methods Appl. Sci. 12(6), 471–487 (1990)

    MATH  Google Scholar 

  27. Erdös, L., Yau, H.-T.: Derivation of the nonlinear Schrödinger equation from a many body Coulomb system. Adv. Theor. Math. Phys. 5(6), 1169–1205 (2001)

    Google Scholar 

  28. Fagnola, F., Rebolledo, R.: Lectures on the qualitative analysis of Quantum Markov Semigroups. Quantum Probab. White Noise Anal. 14, 197–239 (2002)

    Google Scholar 

  29. Feynman, R., Vernon, F.L.: The theory of a general quantum system interacting with a linear dissipative system. Ann. Phys. 24, 118–173 (1963)

    Article  Google Scholar 

  30. Frommlet, F., Markowich, P., Ringhofer, C.: A Wigner Function Approach to Phonon Scattering. VLSI Design 9(4), 339–350 (1999)

    Google Scholar 

  31. Gardiner, C.W., Zoller, P.: Quantum Noise. Berlin-Heidelberg–NewYork: Springer, 2000

  32. Ginibre, J., Velo, G.: On a class of non-linear Schrödinger equations with non local interaction. Math. Z. 170, 109–136 (1980)

    MathSciNet  MATH  Google Scholar 

  33. Hepp, K., Lieb, E.H.: The laser: a reversible quantum dynamical system with irreversible classical macroscopic motion. In: Dynamical systems, theory and applications. Lecture Notes in Phys. 38, Berlin-Heidelberg-NewYork: Springer, 1975, pp. 178–207

  34. Holevo, A.S.: Covariant quantum dynamical semigroups: unbounded generators. In: A. Bohm, H. D. Doebner, P. Kielanowski (eds.), Irreversibility and Causality, Lecture Notes in Physics 504, Berlin-Heidelberg-NewYork: Springer, 1998

  35. Hu, B.L., Matacz, A.: Quantum Brownian Motion in a Bath of Parametric Oscillators: A model for system-field interactions. Phys. Rev. D 49, 6612–6635 (1994)

    Article  MathSciNet  Google Scholar 

  36. Jüngel, A., Tang, S.: Numerical approximation of the viscous quantum hydrodynamic model for semiconductors. Preprint, available at: http://www. numerik.mathematik.uni-mainz.de/∼juengel, 2004

  37. Lindblad, G.: On the generators of quantum mechanical semigroups. Commun. Math. Phys. 48, 119–130 (1976)

    MATH  Google Scholar 

  38. Lindblad, G.: Brownian motion of a quantum harmonic oscillator. Rep. Math. Phys. 10, 393–406 (1976)

    Article  MATH  Google Scholar 

  39. Lions, P.L., Paul, T.: Sur les measures de Wigner. Rev. Math. Iberoamericana 9, 553–618 (1993)

    MATH  Google Scholar 

  40. Louisell, W.: Quantum statistical properties of radiation. NewYork: John Wiley, 1973

  41. O’Connell, R.F.: Wigner distribution function approach to dissipative problems in quantum mechanics with emphasis on decoherence and measurement theory. J. Opt. B: Quantum Semiclass. Opt. 3(5), 349–359 (2003)

    Google Scholar 

  42. Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Berlin-Heidelber-NewYork: Springer, 1983

  43. Reed, M., Simon, B.: Methods of Modern Mathematical Physics, Vol. 1. NewYork: Academic Press, 1972

  44. Reed, M., Simon, B.: Methods of Modern Mathematical Physics, Vol. 2. NewYork: Academic Press, 1975

  45. Risken, H.: The Fokker-Planck Equation. Springer Series on Synergetics, Berlin-Heidelberg-NewYork: Springer, 1989

  46. Simon, B.: Trace ideals and their applications. Cambridge: Cambridge Univ. Press, 1979

  47. Sparber, C., Carrillo, J.A., Dolbeault, J., Markowich, P.: On the Long Time behavior of the Quantum Fokker-Planck Equation. Monatsh. f. Math. 141, 237–257 (2004)

    Article  Google Scholar 

  48. Spohn, H.: Kinetic equations from Hamiltonian dynamics: Markovian limits. Rev. Mod. Phys. 52(3), 569–615 (1980)

    Article  Google Scholar 

  49. Stinespring, W.F.: Positive functions on C*-Algebras. Proc. AMS 6, 211–216 (1955)

    MathSciNet  MATH  Google Scholar 

  50. Stroscio, M.A.: Moment-equation representation of the dissipative quantum Liouville equation. Supperlattices and Microstructures 2, 83–87 (1986)

    Article  Google Scholar 

  51. Vacchini, B.: Translation-covariant Markovian master equation for a test particle in a quantum fluid. J. Math. Phys. 42, 4291–4312 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  52. Vacchini, B.: Quantum optical versus quantum Brownian motion master-equation in terms of covariance and equilibrium properties. J. Math. Phys. 43, 5446–5458 (2002)

    Article  MathSciNet  Google Scholar 

  53. Wigner, E.: On the quantum correction for the thermodynamical equilibrium. Phys. Rev. 40, 742–759 (1932)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Arnold.

Additional information

Communicated by H. Spohn

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arnold, A., Sparber, C. Quantum Dynamical Semigroups for Diffusion Models with Hartree Interaction. Commun. Math. Phys. 251, 179–207 (2004). https://doi.org/10.1007/s00220-004-1172-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-004-1172-x

Keywords

Navigation