Skip to main content
Log in

Vacuum Geometry of the N = 2 Wess-Zumino Model

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We give a mathematically rigorous construction of the moduli space and vacuum geometry of a class of quantum field theories which are N=2 supersymmetric Wess-Zumino models on a cylinder. These theories have been proven to exist in the sense of constructive quantum field theory, and they also satisfy the assumptions used by Vafa and Cecotti in their study of the geometry of ground states. Since its inception, the Vafa-Cecotti theory of topological-antitopological fusion, or tt* geometry, has proven to be a powerful tool for calculations of exact quantum string amplitudes. However, tt* geometry postulates the existence of certain vector bundles and holomorphic sections built from the ground states. Our purpose in the present article is to give a mathematical proof that this postulate is valid within the context of the two-dimensional N=2 supersymmetric Wess-Zumino models. We also give a simpler proof in the case of holomorphic quantum mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Witten, E.: Quantum background independence in string theory. http://arxiv.org/abs/hep-th/9306122, 1993

  2. Cecotti, S., Vafa, C.: Topological antitopological fusion. Nucl. Phys. B 367, 359 (1991)

    Article  MathSciNet  Google Scholar 

  3. Birmingham, D., Blau, M., Rakowski, M., Thompson, G.: Topological field theory. Phys. Rept. 209, 129 (1991)

    Article  Google Scholar 

  4. Strominger, A.: Special Geometry. Commun. Math. Phys. 133, 163 (1990)

    MathSciNet  MATH  Google Scholar 

  5. Greene, B.R., Morrison, D.R., Plesser, M.R.: Mirror manifolds in higher dimension. Commun. Math. Phys. 173, 559 (1995)

    MathSciNet  MATH  Google Scholar 

  6. Bershadsky, M., Cecotti, S., Ooguri, H., Vafa, C.: Kodaira-Spencer theory of gravity and exact results for quantum string amplitudes. Commun. Math. Phys. 165, 311 (1994)

    MathSciNet  MATH  Google Scholar 

  7. Vafa, C., Warner, N.P.: Catastrophes And The Classification Of Conformal Theories. Phys. Lett. B 218, 51 (1989)

    Article  MathSciNet  Google Scholar 

  8. Lerche, W., Vafa, C., Warner, N.P.: Chiral Rings In N = 2 Superconformal Theories. Nucl. Phys. B 324, 427 (1989)

    Article  MathSciNet  Google Scholar 

  9. Dijkgraaf, R., Verlinde, H., Verlinde, E.: Topological Strings In D < 1. Nucl. Phys. B 352, 59 (1991)

    Article  MathSciNet  Google Scholar 

  10. Cecotti, S., Fendley, P., Intriligator, K.A., Vafa, C.: A New supersymmetric index. Nucl. Phys. B 386, 405 (1992)

    Article  MathSciNet  Google Scholar 

  11. Janowsky, S.A.: The Phase Structure of the Two-Dimensional N=2 Wess-Zumino Model. Harvard University Ph.D. Thesis, 1990, 81pp

  12. Janowsky, S.A., Weitsman, J.: A vanishing theorem for supersymmetric quantum field theory and finite size effects in multiphase cluster expansions. Commun. Math. Phys. 143(1), 85–97 (1991)

    MATH  Google Scholar 

  13. Imbrie, J.Z., Janowsky, S.A., Weitsman, J.: Space Dependent Dirac Operators And Effective Quantum Field Theory For Fermions. Commun. Math. Phys. 135, 421 (1991)

    MathSciNet  MATH  Google Scholar 

  14. Borgs, C., Imbrie, J.Z.: Finite Size Scaling And Surface Tension From Effective One-Dimensional Systems. Commun. Math. Phys. 145, 235 (1992)

    MathSciNet  MATH  Google Scholar 

  15. Reed, M., Simon, B.: Methods of Modern Mathematical Physics. Vol. 1–4, New York: Academic Pr., 1975

  16. Witten, E.: Constraints On Supersymmetry Breaking. Nucl. Phys. B 202, 253 (1982)

    Article  MathSciNet  Google Scholar 

  17. Witten, E.: The Index Of The Dirac Operator In Loop Space. In: Elliptic Curves and Modular Forms in Algebraic Topology, Landweber, P.S., (ed.), SLNM 1326, Berlin: Springer, 1988, pp. 161–186

  18. Atiyah, M.F., Hirzebruch, F.: Spin manifolds and group actions. In: Essays on Topology and Related Topics, Memoirs dédié à Georges de Rham A. Haefliger, R. Narasimhan (ed.), New York-Berlin: Springer-Verlag, (1970), pp. 18–28

  19. Griffiths, P., Harris, J.: Principles of Algebraic Geometry. New York: Wiley, 1978

  20. Walter, W.: Ordinary Differential Equations. GTM 182, New York : Springer, 1998

  21. Simon, B.: Quantum Mechanics for Hamiltonians Defined as Quadratic Forms. Princeton Series in Physics, Princeton, New Jersey: Princeton University Press, 1971

  22. Kato, T.: Perturbation Theory for Linear Operators. 2nd ed. Classics in Mathematics. Berlin: Springer-Verlag, 1980

  23. Klimek, S., Lesniewski, A.: Local Rings Of Singularities And N = 2 Supersymmetric Quantum Mechanics. Commun. Math. Phys. 136, 327 (1991)

    MathSciNet  MATH  Google Scholar 

  24. Jaffe, A., Lesniewski, A., Lewenstein, M.: Ground state structure in supersymmetric quantum mechanics. Ann. Physics 178(2), 313–329 (1987)

    MATH  Google Scholar 

  25. Jaffe, A., Lesniewski, A., Weitsman, J.: Index of a family of Dirac operators on loop space. Commun. Math. Phys. 112(1), 75–88 (1987)

    MATH  Google Scholar 

  26. Jaffe, A., Lesniewski, A., Weitsman, J.: The two-dimensional, N=2 Wess-Zumino model on a cylinder. Commun. Math. Phys. 114(1), 147–165 (1988)

    MATH  Google Scholar 

  27. Jaffe, A., Lesniewski, A.: A priori estimates for N=2 Wess-Zumino models on a cylinder. Commun. Math. Phys. 114(4), 553–575 (1988)

    MATH  Google Scholar 

  28. Janowsky, S.A., Weitsman, J.: The Phase Structure Of The Two-Dimensional N=2 Wess-Zumino Model. Commun. Math. Phys. 142, 25 (1991)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by J.Z. Imbrie

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ritter, W. Vacuum Geometry of the N = 2 Wess-Zumino Model. Commun. Math. Phys. 251, 133–156 (2004). https://doi.org/10.1007/s00220-004-1170-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-004-1170-z

Keywords

Navigation