Communications in Mathematical Physics

, Volume 254, Issue 2, pp 489–512 | Cite as

Quantum Flows as Markovian Limit of Emission, Absorption and Scattering Interactions

  • John GoughEmail author


We consider a Markovian approximation, of weak coupling type, to an open system perturbation involving emission, absorption and scattering by reservoir quanta. The result is the general form for a quantum stochastic flow driven by creation, annihilation and gauge processes. A weak matrix limit is established for the convergence of the interaction-picture unitary to a unitary, adapted quantum stochastic process and of the Heisenberg dynamics to the corresponding quantum stochastic flow: the convergence strategy is similar to the quantum functional central limits introduced by Accardi, Frigerio and Lu [1]. The principal terms in the Dyson series expansions are identified and re-summed after the limit to obtain explicit quantum stochastic differential equations with renormalized coefficients. An extension of the Pulé inequalities [2] allows uniform estimates for the Dyson series expansion for both the unitary operator and the Heisenberg evolution to be obtained.


Stochastic Differential Equation Principal Term Coupling Type Markovian Approximation Quantum Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Accardi, L., Frigerio, A., Lu, Y.G.: Weak coupling limit as a quantum functional central limit theorem. Commun. Math. Phys. 131, 537–570 (1990)Google Scholar
  2. 2.
    Pulé, J.V.: The Bloch equations. Commun. Math. Phys. 38, 241–256 (1974)Google Scholar
  3. 3.
    Hudson, R.L., Streater R.F.: Itô’s formula is the chain rule with Wick ordering. Phys. Lett. 86, 277–279 (1982)Google Scholar
  4. 4.
    Krée, P., Raczka, R.: Kernels and symbols of operators in quantum field theory. Ann. Inst. H. Poincaré, Sect. A, 28, 41–73 (1978)Google Scholar
  5. 5.
    Gough, J.: Asymptotic stochastic transformations for non-linear quantum dynamical systems. Reports Math. Phys. 44(3), 313–338 (1999)CrossRefzbMATHGoogle Scholar
  6. 6.
    Van Hove, L.: Quantum mechanical perturbations giving rise to a statistical transport equation. Physica. 21, 617–640 (1955)Google Scholar
  7. 7.
    Hudson, R.L., Parthasarathy, K.R.: Quantum Itô’s formula and stochastic evolutions. Commun. Math. Phys. 93, 301–323 (1984)Google Scholar
  8. 8.
    Wong, E., Zakai, M.: On the relationship between ordinary and stochastic differential equations. Int. J. Eng. Sci. 3, 213–229 (1965)Google Scholar
  9. 9.
    Frigerio, A., Gorini V.: Diffusion processes, quantum dynamical semigroups, and the classical KMS condition. J. Math. Phys. 25(4), 1050–1065 (1984)CrossRefGoogle Scholar
  10. 10.
    Bismut, J.M.: Mecanique Aléatoire. Lecture Notes in Mathematics 866, Berlin: Springer-Verlag, 1981Google Scholar
  11. 11.
    Spohn, H.: Kinetic Equations from Hamiltonian dynamics: Markovian limits. Rev. Mod. Phys. 53, 569–615 (1980)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Davies, E.B.: Markovian master equations. Commun. Math. Phys. 39, 91–110 (1974)zbMATHGoogle Scholar
  13. 13.
    Davies, E.B.: Quantum theory of Open Systems. London, New York: Academic Press, 1976Google Scholar
  14. 14.
    Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups on N-level systems. J. Math. Phys. 17, 821–825 (1976)CrossRefGoogle Scholar
  15. 15.
    Lindblad, G.: On the generators of completely positive semi-groups. Commun. Math. Phys. 48, 119–130 (1976)zbMATHGoogle Scholar
  16. 16.
    Von Waldenfels, W.: Itô Solution of the Linear Quantum Stochastic Differential Equation Describing Light Emission and Absorption. Lecture Notes in Mathematics 1055, Berlin Heidelberg-New York: Springer, 1986, pp. 384–411Google Scholar
  17. 17.
    Spohn, H., Lebowitz, J.L.: Irreversible thermodynamics for quantum systems weakly coupled to thermal reservoirs. Adv. Chem. Phys. 38, 109–142 (1978)Google Scholar
  18. 18.
    Chebotarev, A.N.: Symmetric form of the Hudson-Parthasarathy equation. Mat. Zametki 60(5), 725–750 (1996)Google Scholar
  19. 19.
    Gough, J.: Noncommutative Markov approximations. Dokl. Akad. Nauk. 379(6), 112–116 (2001)zbMATHGoogle Scholar
  20. 20.
    Parthasarathy, K.R.: An Introduction to Quantum Stochastic Calculus. Basel: Birkhaüser, 1992Google Scholar
  21. 21.
    Riordan, J.: An Introduction to Combinatorial Analysis. New York: Wiley, 1980Google Scholar
  22. 22.
    Rota, G.-C., Wallstrom, T.C.: Stochastic integrals: a combinatorial approach. Ann Probab. 25, 1257–1283 (1997)CrossRefMathSciNetzbMATHGoogle Scholar
  23. 23.
    Abrikosov, A.A., Gorkov, L.P., Dzyaloshinski, I.E.: Methods of Quantum field Theory in Statistical Physics. New York: Dover Publications, 1963Google Scholar
  24. 24.
    Pathria, K.R.: Statistical Mechanics. Oxford: Butterworth-Heinemann, 1972Google Scholar
  25. 25.
    Gough, J.: A new approach to non-commutative white noise analysis. C.R. Acad. Sci. Paris t. 326, série I, 981–985 (1998)Google Scholar
  26. 26.
    Accardi, L., Frigerio, A., Lu, Y.G.: The quantum weak coupling limit (II): Langevin equation and finite temperature case. Publ. RIMS Kyoto 31, 545–599 (1995)zbMATHGoogle Scholar
  27. 27.
    Accardi, L., Lu,Y.G., Volovich, I.V.: Quantum Theory and its Stochastic Limit. Berlin Heidelberg: Springer-Verlag, 2002Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  1. 1.Department of Computing & MathematicsNottingham-Trent UniversityNottinghamUnited Kingdom

Personalised recommendations