Advertisement

Communications in Mathematical Physics

, Volume 254, Issue 2, pp 323–341 | Cite as

A Local Index Formula for the Quantum Sphere

  • Sergey NeshveyevEmail author
  • Lars Tuset
Article

Abstract

For the Dirac operator D on the standard quantum sphere we obtain an asymptotic expansion of the SU q (2)-equivariant entire cyclic cocycle corresponding to Open image in new window when evaluated on the element Open image in new window The constant term of this expansion is a twisted cyclic cocycle which up to a scalar coincides with the volume form and computes the quantum as well as the classical Fredholm indices.

Keywords

Neural Network Statistical Physic Complex System Nonlinear Dynamics Quantum Computing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Akbarpour, R., Khalkhali, M.: Equivariant cyclic cohomology of Hopf module algebras. Preprint, http://arxiv.org/abs/math.KT/0009236, To appear in K-Theory
  2. 2.
    Berline, N., Getzler, E., Vergne, M.: Heat kernels and Dirac operators. Grundlehren der Mathematischen Wissenschaften, 298. Berlin: Springer-Verlag, 1992, pp. viii+369 pp.Google Scholar
  3. 3.
    Chakraborty, P.S., Pal, A.: Equivariant spectral triples on the quantum SU(2) group. K-Theory 28(2), 107–126 (2003)CrossRefzbMATHGoogle Scholar
  4. 4.
    Connes, A.: Noncommutative geometry. San Diego, CA: Academic Press, Inc. 1994Google Scholar
  5. 5.
    Connes, A.: Cyclic cohomology, quantum group symmetries and the local index gormula for SUq(2). Preprint, http://arxiv.org/abs/math.QA/0209142, 2002
  6. 6.
    Connes, A., Moscovici, H.: Transgression and the Chern character of finite-dimensional K-cycles. Commun. Math. Phys. 155, 103–122 (1993)Google Scholar
  7. 7.
    Connes, A., Moscovici, H.: The local index formula in noncommutative geometry. Geom. Funct. Anal. 5, 174–243 (1995)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Dabrowski, L., Sitarz A.: Dirac operator on the standard Podleś quantum sphere. Preprint, http://arxiv.org/abs/math.QA/0209048, 2002
  9. 9.
    Friedrich, T.: Dirac operators in Riemannian geometry. Graduate Studies in Mathematics. 25, Providence, RI: AMS, 2000, pp. xvi+195 pp.Google Scholar
  10. 10.
    Goswami, D.: Twisted entire cyclic cohomology, J-L-O cocycles and equivariant spectral triples. To appear in Rev. Math. Phys. 2004Google Scholar
  11. 11.
    Gracia-Bondia, J.M., Várilly, J.C., Figueroa, H.: Elements of noncommutative geometry. Boston, MA: Birkhäuser Boston, Inc. 2001, xviii+685 ppGoogle Scholar
  12. 12.
    Hajac, P.: Bundles over quantum sphere and noncommutative index theorem. K-Theory 21, 141–150 (2000)CrossRefMathSciNetzbMATHGoogle Scholar
  13. 13.
    Hajac, P., Majid, S.: Projective module description of the q-monopole. Commun. Math. Phys. 206, 247–264 (1999)Google Scholar
  14. 14.
    Klimek, S., Lesniewski, A.: Chern character in equivariant entire cyclic cohomology. K-Theory 4, 219–226 (1991)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Klimyk, A.: Schmüdgen K. Quantum groups and their representations. Texts and Monographs in Physics. Berlin: Springer-Verlag, 1997, xx+552 ppGoogle Scholar
  16. 16.
    Krähmer, U., Dirac operators on quantum flag manifolds. Preprint, http://arxiv.org/abs/math.QA/0305071, 2003
  17. 17.
    Kustermans, J., Murphy, G.J., Tuset L.: Differential calculi over quantum groups and twisted cyclic cocycles. J. Geom. Phys. 44, 570–594 (2003)CrossRefzbMATHGoogle Scholar
  18. 18.
    Majid, S.: Noncommutative Riemannian and Spin Geometry of the Standard q-Sphere. Preprint, http://arxiv.org/abs/math.QA/0307351, 2003
  19. 19.
    Masuda, T., Nakagami, Y., Watanabe, J.: Noncommutative differential geometry on the quantum SU(2). I. An algebraic viewpoint. K-Theory 4, 157–180 (1990)zbMATHGoogle Scholar
  20. 20.
    Masuda, T., Nakagami, Y., Watanabe, J.: Noncommutative differential geometry on the quantum two sphere of Podleś. I. An algebraic viewpoint. K-Theory 5, 151–175 (1991)zbMATHGoogle Scholar
  21. 21.
    Neshveyev, S., Tuset, L.: Hopf algebra equivariant cyclic cohomology, K-theory and index formulas. K-Theory, 31, 323–343 (2004)Google Scholar
  22. 22.
    Owczarek, R.: Dirac operator on the Podleś sphere. Int. J. Theor. Phys. 40, 163–170 (2001)CrossRefMathSciNetzbMATHGoogle Scholar
  23. 23.
    Pinzul, A., Stern, A.: Dirac operator on the quantum sphere. Phys. Lett. B 512, 217–224 (2001)CrossRefMathSciNetzbMATHGoogle Scholar
  24. 24.
    Podleś, P.: Quantum spheres. Lett. Math. Phys. 14, 193–202 (1987)Google Scholar
  25. 25.
    Podleś, P.: The classification of differential structures on quantum 2-spheres. Commun. Math. Phys. 150, 167–179 (1992)Google Scholar
  26. 26.
    Schmüdgen, K.: Commutator representations of differential calculi on the quantum group SUq(2). J. Geom. Phys. 31, 241–264 (1999)CrossRefGoogle Scholar
  27. 27.
    Schmüdgen, K., Wagner, E.: Dirac operator and a twisted cyclic cocycle on the standard Podleś quantum sphere. Preprint, http://arxiv.org/abs/math.QA/0305051, 2003
  28. 28.
    Vaksman, L.L.: q-analogues of Clebsch-Gordan coefficients, and the algebra of functions on the quantum group SU(2). (Russian) Dokl. Akad. Nauk SSSR 306, 269–271 (1989); translation in Soviet Math. Dokl. 39, 467–470 (1989)zbMATHGoogle Scholar
  29. 29.
    Woronowicz, S.L.: Twisted SU(2) group. An example of a noncommutative differential calculus. Publ. Res. Inst. Math. Sci. 23, 117–181 (1987)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  1. 1.Mathematics InstituteUniversity of OsloOsloNorway

Personalised recommendations