Skip to main content
Log in

Bihamiltonian Structures and Quadratic Algebras in Hydrodynamics and on Non-Commutative Torus

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We demonstrate the common bihamiltonian nature of several integrable systems. The first one is an elliptic rotator that is an integrable Euler-Arnold top on the complex group GL(N,) for any N, whose inertia ellipsiod is related to a choice of an elliptic curve. Its bihamiltonian structure is provided by the compatible linear and quadratic Poisson brackets, both of which are governed by the Belavin-Drinfeld classical elliptic r-matrix. We also generalize this bihamiltonian construction of integrable Euler-Arnold tops to several infinite-dimensional groups, appearing as certain large N limits of GL(N,). These are the group of a non-commutative torus (NCT) and the group of symplectomorphisms SDiff(T2) of the two-dimensional torus. The elliptic rotator on symplectomorphisms gives an elliptic version of an ideal 2D hydrodynamics, which turns out to be an integrable system. In particular, we define the quadratic Poisson algebra on the space of Hamiltonians on T2 depending on two irrational numbers. In conclusion, we quantize the infinite-dimensional quadratic Poisson algebra in a fashion similar to the corresponding finite-dimensional case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ziglin, S.: Non-integrability of the problem of the motion of four point vortices. Dokl. Akad. Nauk SSSR 250(6), 1296–1300 (1980)

    MATH  Google Scholar 

  2. Reyman, A.G., Semenov-Tyan-Shanskii, M.A.: Lie algebras and Lax equations with spectral parameter on elliptic curve. Notes of the LOMI Seminar 150, 104–118 (1986)

    MATH  Google Scholar 

  3. Levin, A., Olshanetsky, M., Zotov, A.: Hitchin Systems: symplectic Hecke correspondence and two-dimensional version. Commun. Math. Phys. 236(1), 93–133 (2003)

    Article  Google Scholar 

  4. Belavin, A., Drinfeld, V.: Solutions of the classical Yang-Baxter equation for simple Lie algebras. Funct. Anal Appl. 16(3), 1–29 (1982)

    MATH  Google Scholar 

  5. Feigin, B., Odesski, A.: Sklyanin’s elliptic algebras. Funct. Anal. Appl. 23(3), 207–214 (1989)

    MATH  Google Scholar 

  6. Arnold, V.I.: The Hamiltonian nature of the Euler equation in the dynamics of rigid body and of an ideal fluid. Russ. Math. Surv. 24(3), 225–226 (1969)

    MATH  Google Scholar 

  7. Arnold, V.I., Khesin, B.A.: Topological methods in Hydrodynamics. Applied Mathematical Science 125, New York: Springer-Verlag, 1998

  8. Manakov, S.: A remark on the integration of the Eulerian equations of the dynamics of an n-dimensional rigid body. Funct. Anal. Appl. 10(4), 93–94 (1976)

    MATH  Google Scholar 

  9. Ward, R.S.: Infinite-dimensional gauge groups and special nonlinear gravitons. J. Geom. Phys. 8(1–4), 317–325 (1992)

    Google Scholar 

  10. Khesin, B., Ovsienko, V.: The super Korteweg-de Vries equation as an Euler equation. Funct. Anal. Appl. 21(4), 81–82 (1987)

    MATH  Google Scholar 

  11. Segal, G.: The geometry of the KdV equation. In: Topological methods in quantum field theory (Trieste, 1990). Internat. J. Modern Phys. A6(16), 2859–2869 (1991)

  12. Khesin, B., Misiolek, G.: Euler equations on homogeneous spaces and virasoro orbits. Adv. Math. 176, 116–144 (2003)

    Article  MathSciNet  Google Scholar 

  13. Belavin, A.: Discrete groups and integrability of quantum systems. Funct. Anal. Appl. 14, 18–26 (1980)

    MATH  Google Scholar 

  14. Sklyanin, E.K.: Some algebraic structures connected with the Yang-Baxter equation. Funct. Anal. Appl. 16(4), 27–34 (1982)

    MATH  Google Scholar 

  15. Olshanetsky, M.: Integrable tops and non-commutative torus. In: Proc. of Int. Workshop Supersymmetries and Quantum Symmetries, Sept. 2001, Karpacz, Poland, http://arxiv.org/abs/nlin.SI/0203003, 2002

  16. Etingof, P.I., Frenkel, I.B.: Central extensions of current groups in two dimensions. Commun. Math. Phys. 165(3), 429–444 (1994)

    MATH  Google Scholar 

  17. Semenov-Tyan-Shansky, M.: What a classical r-matrix is. Funct. Anal. Appl. 17(4), 17–33 (1983)

    Google Scholar 

  18. Braden, H.W., Dolgushev, V.A., Olshanetsky, M.A., Zotov, A.V.: Classical R-Matrices and the Feigin-Odesskii Algebra via Hamiltonian and Poisson Reductions. J. Phys. A36, 6979–7000 (2003)

    Google Scholar 

  19. Magri, F.: A simple model of the integrable Hamiltonian equation. J. Math. Phys. 19, 1156–1162 (1978)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Khesin.

Additional information

Communicated by L. Takhtajan

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khesin, B., Levin, A. & Olshanetsky, M. Bihamiltonian Structures and Quadratic Algebras in Hydrodynamics and on Non-Commutative Torus. Commun. Math. Phys. 250, 581–612 (2004). https://doi.org/10.1007/s00220-004-1150-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-004-1150-3

Keywords

Navigation