Skip to main content
Log in

Spectral Properties of the Periodic Magnetic Schrödinger Operator in the High-Energy Region. Two-Dimensional Case

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

The goal is to investigate spectral properties of the operator H=(−i∇ +a(x))2+a0(x) in the two-dimensional situation, a(x), a0(x)) being periodic. We construct asymptotic formulae for Bloch eigenvalues and eigenfunctions in the high-energy region, describe properties of isoenergetic curves in the space of quasimomenta and give a new proof of the Bethe-Sommerfeld conjecture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bethe, G., Sommerfeld, A.: Elektronentheorie der Metalle, Berlin-New York: Springer Verlag, 1967

  2. Birman, M.Sh., Suslina, T.A.: The two-dimensional periodic magnetic Hamiltonian is absolutely continuous. Algebra i Analiz 9(1), 32 –48 (1997); translation in St.Petersburg Math. J. 9(1), 21 –32 (1998)

    MATH  Google Scholar 

  3. Birman, M.Sh., Suslina, T.A.: Absolute continuity of the two-dimensional periodic magnetic Hamiltonian with discontinuous vector-valued potential. Algebra i Analiz 10(4), (1998) translation in St.Petersburg Math. J 10(4), 1–26 (1999)

  4. Birman, M.Sh., Suslina, T.A.: Periodic magnetic Hamiltonian with a variable metric. The problem of absolute continuity. Algebra i Analiz 11, 2 (1999) translation in St.Petersburg Math. J. 11, 2 (2000)

    MATH  Google Scholar 

  5. Brüning, J., Sunada, T.: On the spectrum of periodic elliptic operators. Nagoya Math. J. 126, 159–171 (1992)

    MathSciNet  Google Scholar 

  6. Dahlberg, B.E.J., Trubowitz, E.: A Remark on Two Dimensional Periodic Potentials. Comment. Math. Helv. 57, 130 –134 (1982)

    MATH  Google Scholar 

  7. Dubrovin, D.A., Novikov, S.P.: Ground states in a periodc field. Magnetic Bloch functions and vector bundles. Soviet Math. Dokl. 22, 240 – 244 (1980)

    MATH  Google Scholar 

  8. Friedlander, L.: On the spectrum of a class of second order periodic elliptic differential operators. Commun. Math. Phys. 229(1), 49–55 (2002)

    Article  MATH  Google Scholar 

  9. Gel’fand, I.M.: Expansion in Eigenfunctions of an Equation with Periodic Coefficients. Dokl. Akad. Nauk SSSR 73, 1117–1120 (1950) (in Russian)

    MATH  Google Scholar 

  10. Helffer, B., Mohamed, A.: Asymptotic of the density of states for the Schrödinger Operator with Periodic Electric Potential. Duke Math. J. 92(1), 1–60 (1998)

    MATH  Google Scholar 

  11. Hempel, R., Herbst, I.: Strong magnetic fields, Dirichlet boundaries and spectral gaps. Commun. Math. Phys. 164, 237 – 259 (1995)

    Google Scholar 

  12. Hempel, R., Herbst, I.: Bands and gaps for periodic magnetic Hamiltonians. In: Partial differential operators and mathematical physics (Holzhau, 1994), Oper. Theory Adv. Appl. 78, Basel: Birkhauser, 1995, pp. 175–184

  13. Iwatsuka, A.: On Schrödinger operators with magnetic fields. In: Lecture Notes in Mathematics 1450, Berlin: Springer-Verlag, 1990, pp. 157–172

  14. Kato, T.: Perturbation Theory for Linear Operators. Berlin-Heidelberg-New York: Springer-Verlag, 1966

  15. Karpeshina, Yu. E.: Analytic Perturbation Theory for a Periodic Potential. Izv. Akad. Nauk SSSR Ser. Mat. 53(1), 45–65 (1989); English transl.: Math. USSR Izv. 34(1), 43–63 (1990)

    MATH  Google Scholar 

  16. Karpeshina, Yu.E.: Perturbation Theory for the Schrödinger Operator with a Periodic Potential. Trudy Mat. Inst. Steklov 188, 88 – 116 (1990); Engl. transl.: Proceedings of the Steklov Institute of Mathematics, 1991, Issue 3, pp. 109–145

    MATH  Google Scholar 

  17. Karpeshina, Yu.E.: Perturbation Theory for the Schrödinger operator with a periodic potential. Lecture Notes in Mathematics, # 1663, Berlin-Heidelberg-New York: Springer-Verlag, 1997, pp. 352

  18. Karpeshina, Yu.E.: System of Basic Functions for the Two-Dimensional Periodic Magnetic Schrödinger Operator. http:// rene.ma.Utexas.edu/mp-arc-bin/mpa? Yn=01-340,2001

  19. Karpeshina Yu.E.: On the Periodic Magnetic Schrödinger Operator in Rd. Eigenvalues and Model Functions. Operator Theory: Advances and Applications. 132, Basel: Birkhäuser, 2002, pp. 219–231

  20. Kuchment, P.: Floquet theory for partial differential equations. Basel: Birkhäuser, 1993

  21. Kuchment, P., Levendorskii, S.: On absolute continuity of spectra of periodic elliptic operators. In: Mathematical Results in Quantum Mechanics, J. Dittrich, P.Exner et al (eds.), Operator Theory. Advances and Applications 108, Basel: Bürkhäuser, 1999, pp. 291–297

  22. Landau, L.D., Livshitz, E.M.: Quantum mechanics, London: Pergamon Press, 1958

  23. Madelung, O.: Introduction to Solid State Theory. Berlin, New-York: Springer-Verlag, 1978

  24. Mohamed, A.: Asymptotic of the density of states for the Schrödinger operator with periodic electromagnetic potential. J. Math. Phys. 38(8), 4023–4051 (1997)

    Article  MATH  Google Scholar 

  25. Parnovski, L., Sobolev, A. V.: Lattice points, perturbation theory and the periodic polyharmonic operator. Ann. Henri Poincare 2(3), 573–581 (2001)

    MATH  Google Scholar 

  26. Parnovski, L., Sobolev, A. V.: On the Bethe-Sommerfeld conjecture for the polyharmonic operator. Duke Math. J. 107(2), 209–238 (2001)

    MATH  Google Scholar 

  27. Reed, M., Simon, B.: Methods of Modern Mathematical Physics., Vol IV, New York-San Francisco-London: Academic Press, 3rd ed., 1987

  28. Sjöstrand, J.: Microlocal analysis for periodic magnetic Schrödinger equations and related questions. In: Microlocal Analysis and Applications, Lecture Notes in Physics, 1495, Berlin: Springer – Verlag, 1991, pp. 237–332

  29. Skriganov, M.M.: Proof of the Bethe-Sommerfeld Conjecture in Dimension Two. DAN SSSR, 248, 1, 49–52 (1979); English transl. in Soviet Math. Dokl. 20(5), 956 – 959 (1979)

    Google Scholar 

  30. Skriganov, M.M.: Geometric and Arithmetic Methods in the Spectral Theory of Multidimensional Periodic Operators. Trudy Mat. Inst. Steklov. 171, 1–121 (1985); Engl. transl.: Proc. Steklov Inst. Math. 171, 2 (1987)

    MATH  Google Scholar 

  31. Skriganov, M.M.: The Spectrum Band Structure of the Three-Dimensional Schrödinger Operator with a Periodic Potential. Invent. Math. 80, 107–121 (1985)

    MATH  Google Scholar 

  32. Sobolev, A.: Absolute continuity of the periodic magnetic Schrödinger operator. Invent. Math. 137(1), 85–112 (1999)

    Article  MATH  Google Scholar 

  33. Thomas, L.E.: Time-dependent approach to scattering from impurities in a crystal. Commun. Math. Phys. 33, 335–343 (1973)

    Google Scholar 

  34. Veliev, O.A.: Asymptotic Formulae for Eigenvalues of a Periodic Schrödinger Operator and Bethe-Sommerfeld Conjecture. Functional. Anal. i Prilozhen. 21(2), 1–15 (1987); Engl. transl.: Funct. Anal. Appl. 21, 87–99 (1987)

    MATH  Google Scholar 

  35. Veliev, O.A.: Asymptotic Formulae for Bloch Functions of Multidimensional Periodic Schrödinger operator and Some of Their Applications. In: Spectral Theory of Operators and its Applications, 9, Baku, 1989, pp. 59 –76 (in Russian)

  36. Veliev, O.A.: The Periodic Multidimensional Schrodinger Operator, Part 2, Asymptotic Formulae for Bloch Functions and Fermi Surfaces. http://rene.ma.Uteras.edu/mp-arc-bin/mpa? yn=01-463, 2001

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yulia Karpeshina.

Additional information

Communicated by B. Simon

Research partially supported by USNSF Grant DMS-0201383.

Acknowledgements The author is thankful to Konstantin Makarov for very useful discussions and to Young-Ran Lee for her great help with pictures.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karpeshina, Y. Spectral Properties of the Periodic Magnetic Schrödinger Operator in the High-Energy Region. Two-Dimensional Case. Commun. Math. Phys. 251, 473–514 (2004). https://doi.org/10.1007/s00220-004-1129-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-004-1129-0

Keywords

Navigation