Skip to main content
Log in

Identification of the Dilute Regime in Particle Sedimentation

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We investigate the dynamics of rigid, spherical particles of radius R sinking in a viscous fluid. Both the inertia of the particles and the fluid are neglected. We are interested in a large number N of particles with average distance dR. We investigate in which regime (in terms of N and R/d) the particles do not significantly interact and approximately sink like single particles. We rigorously establish the lower bound for the critical number N crit of particles. This lower bound agrees with the heuristically expected N crit in terms of its scaling in R/d. The main difficulty lies in showing that the particles cannot get significantly closer over a relevant time scale. We use the method of reflection for the Stokes operator to bound the strength of the particle interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Batchelor, G.K., Wen, C.S.: Sedimentation in a dilute dispersion of spheres. J. Fluid Mech 52, 245–268 (1972)

    MATH  Google Scholar 

  2. Batt, J.: N-Particle approximation to the nonlinear Vlasov-Poisson system. Nonlinear Anal. 47, 1445–1456 (2001)

    Article  MathSciNet  Google Scholar 

  3. Cercignani, C., Illner, R., Pulvirenti, M.: The mathematical theory of dilute gases. Applied Mathematical Sciences 106, New York: Springer-Verlag, 1994

  4. Caflisch, R., Papanicolaou, G.C.: Dynamic theory of suspensions with brownian effects. SIAM J. Appl. Math. 43, 885–906 (1983)

    MathSciNet  MATH  Google Scholar 

  5. Desjardins, B., Esteban, M.: On weak solutions for fluid-rigid structure interaction: compressible and incompressible models. Comm. P.D.E. 25, 1399–1413 (2000)

    MathSciNet  MATH  Google Scholar 

  6. Feuillebois, F.: Sedimentation in a dispersion with vertical inhomogeneities. J. Fluid Mech. 139, 145–172 (1984)

    MATH  Google Scholar 

  7. Goodman, J., Hou, T.Y., Lowengrub, J.: Convergence of the point vortex method for the 2-D Euler equations. Comm. Pure Appl. Math. 43, 415–430 (1990)

    MathSciNet  MATH  Google Scholar 

  8. Happel, J., Brenner, H.: Low Reynolds number hydrodynamics. Englewood Cliffs, NJ: Prentice-Hall, Inc., 1965

  9. Hinch, E.J.: An averaged equation approach to particle interactions in a fluid suspension. J. Fluid Mech. 83, 695–720 (1977)

    MATH  Google Scholar 

  10. Herrero, H., Lucquin-Desreux, B., Perthame, B.: On the motion of dispersed bubbles in a potential flow- a kinetic description of the added mass effect. SIAM J. Appl. Math. 60, 61–83 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hoffmann, K.H., Starovoitov, V.N.: On a motion of a solid body in a viscous fluid. Two-dimensional case. Adv. Math. Sci. Appl. 9, 633–648 (1999)

    MATH  Google Scholar 

  12. Illner, R., Pulvirenti, M.: Global validity of the Boltzmann equation for two and three-dimensional rare gas in vacuum. Commun. Math. Phys. 121, 143–146 (1989)

    MathSciNet  MATH  Google Scholar 

  13. Jabin, P.E., Perthame, B.: Notes on mathematical problems on the dynamics of dispersed particles interacting through a fluid. In: Modelling in applied sciences, Model. Simul. Sci. Eng. Technol., Boston: Birkhauser Boston, 2000, pp. 111–147

  14. Maury, B.: Direct simulations of fluid-particle flows in biperiodic domains. J. Comput. Phys. 156, 325–351 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  15. Oseen, C.W.: Neuere Methoden und Ergebnisse in der Hydrodynamik. Leipzig: Akademische Verlagsgesellschaft, 1927

  16. Rubinstein, J., Keller, J.B.: Particle distribution functions in suspensions. Phys. Fluids A1, 1632–1641 (1989)

    Google Scholar 

  17. Russo, G., Smereka, P.: Kinetic theory for bubbly flow I and II. SIAM J. Appl. Math. 56, 327–371 (1996)

    MathSciNet  MATH  Google Scholar 

  18. Serre, D.: Chute libre d’un solide dans un fluide bisqueux incompressible. Japan J. Appl. Math. 4, 33–73 (1987)

    MATH  Google Scholar 

  19. Spohn, H.: Large scale dynamics of interacting particles. Berlin: Springer-Verlag, 1991

  20. Victory, H.D., Allen, E.J. Jr: The convergence theory of particle-in-cell methods for multidimencional Vlasov-Poisson systems. SIAM J. Numer. Anal. 28, 1207–1241 (1991)

    MathSciNet  MATH  Google Scholar 

  21. Wollman, S.: On the approximation of the Vlasov-Poisson system by particles methods. SIAM J. Numer. Anal. 37, 1369–1398 (2000)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by H. Spohn

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jabin, PE., Otto, F. Identification of the Dilute Regime in Particle Sedimentation. Commun. Math. Phys. 250, 415–432 (2004). https://doi.org/10.1007/s00220-004-1126-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-004-1126-3

Keywords

Navigation