Skip to main content
Log in

Time Development of Exponentially Small Non-Adiabatic Transitions

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Optimal truncations of asymptotic expansions are known to yield approximations to adiabatic quantum evolutions that are accurate up to exponentially small errors. In this paper, we rigorously determine the leading order non–adiabatic corrections to these approximations for a particular family of two–level analytic Hamiltonian functions. Our results capture the time development of the exponentially small transition that takes place between optimal states by means of a particular switching function. Our results confirm the physics predictions of Sir Michael Berry in the sense that the switching function for this family of Hamiltonians has the form that he argues is universal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Avron, J.E., Elgart, A.: An Adiabatic Theorem without a Gap Condition. In: Dittrich, J., Exner, P., Tater, M. (eds), Operator theory advances and Applications, Vol. 108. Basel-Boston: Birkhauser, 1999

  2. Berry, M.V.: Uniform asymptotic smoothing of Stokes’s discontinuities. Proc. Roy. Soc. Lond. A 422, 7–21 (1989)

    MathSciNet  MATH  Google Scholar 

  3. Berry, M.V.: Histories of adiabatic quantum transitions. Proc. Roy. Soc. Lond. A 429, 61–72 (1990)

    MathSciNet  Google Scholar 

  4. Berry, M.V.: Geometric amplitude factors in adiabatic quantum transitions. Proc. Roy. Soc. Lond. A 430, 405–411 (1990)

    MathSciNet  Google Scholar 

  5. Berry, M.V., Lim, R.: Universal transition prefactors derived by superadiabatic renormalization. J. Phys. A 26, 4737–4747 (1993)

    Article  MathSciNet  Google Scholar 

  6. Born, M., Fock, V.: Beweis des Adiabatensatzes. Z. Phys. 51, 165–180 (1928)

    MATH  Google Scholar 

  7. Costin, O., Dupaigne, L., Kruskal, M. D.: Borel Summation of Adiabatic Invariants. Preprint in preparation, http://www.math.rutgers.edu/∼costin/adials.pdf

  8. Costin, O., Kruskal, M.: On optimal truncation of divergent series solutions of nonlinear differential systems; Berry smoothing. Proc. Roy. Soc. Lond. A 455, 1931–1956 (1999)

    Article  MATH  Google Scholar 

  9. Dykhne, A.M.: Adiabatic perturbation of discrete spectrum states. Sov. Phys. JETP. 14, 941–943 (1962)

    Google Scholar 

  10. Hagedorn, G. A.: Proof of the Landau–Zener Formula in an Adiabatic Limit with Small Eigenvalue Gaps. Commun. Math. Phys. 136, 433–449 (1991)

    MathSciNet  MATH  Google Scholar 

  11. Hagedorn, G. A., Joye, A.: Elementary Exponential Error Estimates for the Adiabatic Approximation. J. Math. Anal. Appl. 267, 235–246 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. Howls, C.: The Borel-Laplace approach to hyperasymptotics. In: R.I.M.S., University of Kyoto, Japan, Conference Proceedings, ed. Y. Takei, Vol. 968, 1997, pp. 31–48

  13. Hwang, J.-T., Pechukas, P.: The adiabatic theorem in the complex plane and the semi-classical calculation of non-adiabatic transition amplitudes. J. Chem. Phys. 67, 4640–4653 (1977)

    Article  Google Scholar 

  14. Jaksic, V., Segert, J.: Exponential approach to the adiabatic limit and the Landau-Zener formula. Rev. Math. Phys. 4, 529–574 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  15. Joye, A.: Non-trivial prefactors in Adiabatic Transition Probabilities Induced by High Order Complex Degeneracies. J. Phys. A 26, 6517–6540 (1993)

    Article  MathSciNet  Google Scholar 

  16. Joye, A.: Proof of the Landau-Zener formula. Asymptotic Analysis 9, 209–258 (1994)

    MathSciNet  MATH  Google Scholar 

  17. Joye, A.: Exponential Asymptotics in a Singular Limit for n-Level Scattering Systems. SIAM J. Math. Anal. 28, 669–703 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  18. Joye, A., Kunz, H., Pfister, C.-E.: Exponential decay and geometric aspect of transition probabilities in the adiabatic limit. Ann. Phys. 208, 299–332 (1991)

    MathSciNet  MATH  Google Scholar 

  19. Joye, A., Pfister, C.-E.: Exponentially small adiabatic invariant for the Schrödinger equation. Commun. Math. Phys. 140, 15–41 (1991)

    MathSciNet  MATH  Google Scholar 

  20. Joye, A., Pfister, C.-E.: Superadiabatic evolution and adiabatic transition probability between two non-degenerate levels isolated in the spectrum. J. Math. Phys. 34, 454–479 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  21. Joye, A., Pfister, C.-E.: Semiclassical Asymptotics Beyond all Orders for Simple Scattering Systems. SIAM J. Math. Anal. 26, 944–977 (1995)

    MathSciNet  MATH  Google Scholar 

  22. Joye, A., Pfister, C.-E.: Exponential Estimates in Adiabatic Quantum Evolution, In: De Wit, D., Bracken, A.J., Gould, M.D., Pearce, P.A. (eds), XIIth International Congress of Mathematical Physics, ICMP ‘97, Cambridge, MA: International Press, 1999, pp. 309–315

  23. Joye, A., Pfister, C.-E.: Complex WKB method for 3-level scattering systems. Asymp. Anal. 23, 91–109 (2000)

    MathSciNet  MATH  Google Scholar 

  24. Landau, L.D.: Collected Papers of L.D.Landau. Oxford, London, Edinburgh, New York, Paris, Frankfurt: Pergamon Press, 1965

  25. Lim, R., Berry, M.V.: Superadiabatic tracking of quantum evolution. J. Phys. A 24, 3255–3264 (1991)

    Article  Google Scholar 

  26. Martinez, A.: Precise exponential estimates in adiabatic theory. J. Math. Phys. 35(8), 3889–3915 (1994)

    Article  MATH  Google Scholar 

  27. McLeod, J. B.: Smoothing of Stokes discontinuities. Proc. Roy. Soc. London A 437, 343–354 (1992)

    MathSciNet  MATH  Google Scholar 

  28. Nenciu, G.: On the adiabatic theorem of quantum mechanics. J. Phys. A 13, L15–L18 (1980)

    Google Scholar 

  29. Nenciu, G.: Adiabatic theorems and spectral concentration. Commun. Math. Phys. 82, 121–135 (1981)

    MathSciNet  MATH  Google Scholar 

  30. Nenciu, G.: Asymptotic invariant subspaces, adiabatic theorems and block diagonalisation. In: Recent developments in quantum mechanics (Poiana Braşov, 1989), Math. Phys. Stud. 12, Dordrecht: Kluwer Acad. Publ., 1991, pp. 133–149

  31. Nenciu, G.: Linear adiabatic theory. Exponential estimates. Commun. Math. Phys. 152, 479–496 (1993)

    MATH  Google Scholar 

  32. Olde Daalhuis, A.: Hyperasymptotics and the Stokes’ phenomenon. Proc. Roy. Soc. Edinburgh 123 A, 731–743 (1993)

    MATH  Google Scholar 

  33. Sjöstrand, J.: Remarque sur des projecteurs adiabatiques du point de vue pseudodifférentiel. C. R. Acad. Sci. Paris 317, Sér. I 22, 217–220 (1993)

    Google Scholar 

  34. Zener, C.: Non-adiabatic crossing of energy levels. Proc. Roy. Soc. London 137, 696–702 (1932)

    MATH  Google Scholar 

Download references

Acknowledgements.

George Hagedorn wishes to thank the Institut Fourier of the Université de Grenoble I for its kind hospitality and support. Alain Joye wishes to thank Virgina Tech for its kind hospitality and the NSF for travel support. We also wish to thank Ovidiu Costin for many useful discussions about this problem.

Author information

Authors and Affiliations

Authors

Additional information

Communicated by B. Simon

Partially supported by National Science Foundation Grants DMS–0071692 and DMS–0303586.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hagedorn, G., Joye, A. Time Development of Exponentially Small Non-Adiabatic Transitions. Commun. Math. Phys. 250, 393–413 (2004). https://doi.org/10.1007/s00220-004-1124-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-004-1124-5

Keywords

Navigation