Advertisement

Communications in Mathematical Physics

, Volume 247, Issue 3, pp 655–695 | Cite as

Propagation of Oscillations in Real Vanishing Viscosity Limit

  • Christophe CheverryEmail author
Article

Abstract:

In this paper, we study viscous perturbations of quasilinear hyperbolic systems in several space dimensions. The equations involve a singular parameter ɛ which goes to zero. They arise in realistic models of compressible flow: the large-scale motions in the atmosphere [12]. They come also from theoretical considerations in non-linear geometric optics [4], [5]. We prove that solutions uɛ exist on a domain of space time independent on Open image in new window

Keywords

Viscosity Viscosity Limit Vanishing Viscosity Limit Vanishing Viscosity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alinhac, S., Gerard, P.: Opérateurs pseudo-différentiels et théorème de Nash-Moser. Savoirs Actuels, éditions du CNRS, 1991, 190 pGoogle Scholar
  2. 2.
    Chemin, J-Y.: Système primitif de l’océan-atmosphère et limite quasi-géostrophique. Prépublication de l’Ecole Polytechnique, exposé VII, 1999–1996Google Scholar
  3. 3.
    Chemin, J-Y., Desjardins, B., Gallagher, I., Grenier, E.: Fluids with anisotropic viscosity. Mathematical Modelling and Numerical Analysis, M2AN, 34(2), 315–335 (2000)Google Scholar
  4. 4.
    Cheverry, C., Guès, O., Métivier, G.: Oscillations fortes sur un champ linéairement dégénéré. Annales Scientifiques de l’ENS 5, (2003), 70 pGoogle Scholar
  5. 5.
    Cheverry, C., Guès, O., Métivier, G.: Large amplitude high frequency waves for quasilinear hyperbolic systems, to appear in Advances in Differential equationsGoogle Scholar
  6. 6.
    Friedlandler, S., Strauss, W., Vishik, M.: Nonlinear instability in an ideal fluid. Ann. Inst. Henri Poincaré 14(2), 187–209 (1997)CrossRefGoogle Scholar
  7. 7.
    Gallagher, I., Saint-Raymond, L.: Asymptotic results for pressureless magneto-hydrodynamics. Preprint de l’Ecole Polytechnique, n. 2003-11Google Scholar
  8. 8.
    Guès, O.: Développement asymptotique de solutions exactes de systèmes hyperboliques quasilinéaires. Asymptotic Anal. 6(3), 241–269 (1993)Google Scholar
  9. 9.
    Joly, J-L., Métivier, G., Rauch, J.: Transparent nonlinear geometric optics and Maxwell-Bloch equations. J. Differ. Eq. 166, 175–250 (2000)CrossRefMathSciNetzbMATHGoogle Scholar
  10. 10.
    Majda, A.: Compressible Fluid Flow and Systems of Conservation Laws in Several space variables. New-York: Springer Verlag, 1984Google Scholar
  11. 11.
    Métivier, G.: Exemples d’instabilités pour des équations d’ondes non linéaires. Exposé Séminaire Bourbaki, Novembre 2002Google Scholar
  12. 12.
    Pedlosky, J.: Geophysical fluid dynamics. Berlin-Heidelberg-New York: Springer (1979)Google Scholar
  13. 13.
    Gerard-Varet, D.: A geometric optics type approach to fluid boundary layers. Accepted for publication in Communications in Partial Differential EquationsGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  1. 1.IRMARRennes cedexFrance

Personalised recommendations