Skip to main content
Log in

Averaging Versus Chaos in Turbulent Transport?

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract:

In this paper we analyze the transport of passive tracers by deterministic stationary incompressible flows which can be decomposed over an infinite number of spatial scales without separation between them. It appears that a low order dynamical system related to local Peclet numbers can be extracted from these flows and it controls their transport properties. Its analysis shows that these flows are strongly self-averaging and super-diffusive: the delay τ (r) for any finite number of passive tracers initially close to separate till a distance r is almost surely anomalously fast (τ (r)∼ r 2–ν, with ν > 0). This strong self-averaging property is such that the dissipative power of the flow compensates its convective power at every scale. However as the circulation increases in the eddies the transport behavior of the flow may (discontinuously) bifurcate and become ruled by deterministic chaos: the self-averaging property collapses and advection dominates dissipation. When the flow is anisotropic a new formula describing turbulent conductivity is identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Asselah, A., Castell, F.: Quenched large deviations for diffusions in a random gaussian shear flow drift. ArXiv math-PR/0202291, 2002

  2. Avellaneda, M., Majda, A.: Homogenization and renormalization of multiple-scattering expansions for green functions in turbulent transport. In: Composite Media and Homogenization Theory, Volume 5 of Progress in Nonlinear Differential Equations and Their Applications 1987, pp. 13–35

  3. Avellaneda, M., Majda, A.: Mathematical models with exact renormalization for turbulent transport. Commun. Math. Phys. 131, 381–429 (1990)

    MathSciNet  MATH  Google Scholar 

  4. Avellaneda, M., Majda, A.J.: An integral representation and bounds on the effective diffusivity in passive advection by laminar and turbulent flows. Commun. Math. Phys. 138, 339–391 (1991)

    MathSciNet  MATH  Google Scholar 

  5. Avellaneda, M.: Homogenization and renormalization, the mathematics of multi-scale random media and turbulent diffusion. In: Lectures in Applied Mathematics, Volume 31, 1996, pp. 251–268

  6. Rabi Bhattacharya: Multiscale diffusion processes with periodic coefficients and an application to solute transport in porous media. The Annals of Appl. Probab. 9(4), 951–1020 (1999)

    Google Scholar 

  7. Bensoussan, A., Lions, J. L., Papanicolaou, G.: Asymptotic analysis for periodic structure. Amsterdam, North Holland, 1978

  8. Gérard, Ben Arous, Houman, Owhadi: Multi-scale homogenization with bounded ratios and anomalous slow diffusion. Commun. Pure and App. Math. XV, 1–34 (2002)

  9. Gérard, Ben Arous, Houman, Owhadi: Super-diffusivity in a shear flow model from perpetual homogenization. Commun. Math. Phys. 227(2), 281–302 (2002)

    Article  Google Scholar 

  10. Childress, S.: Alpha-effect in flux ropes and sheets. Phys. Earth Planet Intern. 20, 172–180 (1979)

    Article  Google Scholar 

  11. Castell, F., Pradeilles, F.: Annealed large deviations for diffusions in a random Gaussian shear flow drift. Stoch. Process. Appl. 94(2), 171–197 (2001)

    Article  Google Scholar 

  12. Dimotakis, P. E., Catrakis, H. J.: Turbulence, fractals, and mixing. Technical report, NATO Advanced Studies Institute series, Mixing: Chaos and Turbulence (7-20 July 1996, Corsica, France), 1997. Available as GALCIT Report FM97-1

  13. Fannjiang, A.: Richardson’s laws for relative dispersion in colored-noise flows with kolmogorov-type spectra. ArXiv math-ph/0209007, 2002

  14. Furtado, F., Glimm,J., Lindquist, B., Pereira, F., Zhang, Q.: Time dependent anomalous diffusion for flow in multi-fractal porous media. In: T.M.M. Verheggan, (ed.) Proceeding of the workshop on numerical methods for simulation of multiphase and complex flow, New York: Springer Verlag, 1991, pp. 251–259

  15. Fannjiang, A., Komorowski, T.: Fractional brownian motion limit for motions in turbulence. Ann. of Appl. Prob. 10(4), (2001)

  16. Fannjiang, A., Papanicolaou, G.C.: Convection enhanced diffusion for periodic flows. SIAM J. Appl. Math. 54, 333–408 (1994)

    MathSciNet  MATH  Google Scholar 

  17. Gaudron, G.: Scaling laws and convergence for the advection-diffusion equation. Ann. of Appl. Prob. 8, 649–663 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gawedzki, K., Kupiainen, A.: Anomalous scaling of the passive scalar. Phys. Rev. Lett. 75, 3834–3837 (1998)

    Article  Google Scholar 

  19. Glimm, J., Lindquist, B., Pereira, F., Peierls, R.: The multi-fractal hypothesis and anomalous diffusion. Mat. Apl. Comput. 11(2), 189–207 (1992)

    Google Scholar 

  20. Glimm, J., Zhang, Q.: Inertial range scaling of laminar shear flow as a model of turbulent transport. Commun. Math. Phys. 146, 217–229 (1992)

    MathSciNet  MATH  Google Scholar 

  21. Isichenko, M.B., Kalda, J.: Statistical topography. ii. two-dimensional transport of a passive scalar. J. Nonlinear Sci. 1, 375–396 (1991)

    MATH  Google Scholar 

  22. Jikov, V. V., Kozlov, S. M., Oleinik, O. A.: Homogenization of Differential Operators and Integral Functionals. Berlin-Heidelberg-New York: Springer-Verlag, 1991

  23. Komorowski, T., Olla, S.: On the superdiffusive behavior of passive tracer with a gaussian drift. Journ. Stat. Phys. 108, 647–668 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kesten, H., Spitzer, F.: A limit theorem related to a new class of self-similar processes. Z. Wahrsch. Verw. Gebiete 50(1), 5–25 (1979)

    MATH  Google Scholar 

  25. Landau, L.D., Lifshitz, E.M.: Fluid Mechanics, 2nd ed., Moscow: MIR, 1984

  26. Meyers, N. G.: An l p-estimate for the gradient of solutions of second order elliptic divergence equations. Ann. Scula Norm. Sup. Pisa 17, 189–206 (1963)

    MATH  Google Scholar 

  27. Majda, A.J., Kramer, P.R.: Simplified models for turbulent diffusion: Theory, numerical modelling, and physical phenomena. Phys. Rep. 314, 237–574 (1999). Available at http://www.elsevier.nl/locate/physrep

    Article  MathSciNet  Google Scholar 

  28. Norris, J.R.: Long-time behaviour of heat flow: Global estimates and exact asymptotics. Arch. Rat. Mech. Anal. 140, 161–195 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  29. Owhadi, H.: Anomalous diffusion and homogenization on an infinite number of scales. PhD thesis, EPFL – Swiss Federal Institute of Technology, 2001. Available at http://www.cmi.univ-mrs.fr/∼owhadi/

  30. Houman, Owhadi: Anomalous slow diffusion from perpetual homogenization. Submitted, 2001. Preprint available at http://www.cmi.univ-mrs.fr/∼ owhadi/

  31. Piterbarg, L.: Short-correlation approximation in models of turbulent diffusion. In: Stochastic models in geosystems (Minneapolis, MN, 1994), Volume 85, of IMA Vol. Math. Appl., New York: Springer, 1997, pp. 313–352

  32. Simander, C.G.: On Dirichlet’s boundary value problem. Berlin-Heidelberg-New York: Springer-Verlag, 1972

  33. Stampacchia, G.: Le problème de dirichlet pour les équations elliptiques du second ordre à coefficients discontinus. Ann. Inst. Fourier (Grenoble), 15(1), 189–258 (1965)

    Google Scholar 

  34. Stampacchia, G.: Equations elliptiques du second ordre à coefficients discontinus. Montréal Canada: Les Presses de l’Université de Montréal, 1966

  35. Woyczynski, W. A.: Passive tracer transport in stochastic flows. In: Stochastic Climate Models, Boston Birkhäuser-Boston, 2000, p. 16

  36. Zhang, Q.: A multi-scale theory of the anomalous mixing length growth for tracer flow in heterogeneous porous media. J. Stat. Phys. 505, 485–501 (1992)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Houman Owhadi.

Additional information

Communicated by A. Kupiainen

Rights and permissions

Reprints and permissions

About this article

Cite this article

Owhadi, H. Averaging Versus Chaos in Turbulent Transport?. Commun. Math. Phys. 247, 553–599 (2004). https://doi.org/10.1007/s00220-004-1069-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-004-1069-8

Keywords

Navigation