Advertisement

Communications in Mathematical Physics

, Volume 247, Issue 3, pp 553–599 | Cite as

Averaging Versus Chaos in Turbulent Transport?

  • Houman OwhadiEmail author
Article

Abstract:

In this paper we analyze the transport of passive tracers by deterministic stationary incompressible flows which can be decomposed over an infinite number of spatial scales without separation between them. It appears that a low order dynamical system related to local Peclet numbers can be extracted from these flows and it controls their transport properties. Its analysis shows that these flows are strongly self-averaging and super-diffusive: the delay τ (r) for any finite number of passive tracers initially close to separate till a distance r is almost surely anomalously fast (τ (r)∼ r 2–ν , with ν > 0). This strong self-averaging property is such that the dissipative power of the flow compensates its convective power at every scale. However as the circulation increases in the eddies the transport behavior of the flow may (discontinuously) bifurcate and become ruled by deterministic chaos: the self-averaging property collapses and advection dominates dissipation. When the flow is anisotropic a new formula describing turbulent conductivity is identified.

Keywords

Spatial Scale Advection Transport Property Infinite Number Dissipative Power 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Asselah, A., Castell, F.: Quenched large deviations for diffusions in a random gaussian shear flow drift. ArXiv math-PR/0202291, 2002Google Scholar
  2. 2.
    Avellaneda, M., Majda, A.: Homogenization and renormalization of multiple-scattering expansions for green functions in turbulent transport. In: Composite Media and Homogenization Theory, Volume 5 of Progress in Nonlinear Differential Equations and Their Applications 1987, pp. 13–35Google Scholar
  3. 3.
    Avellaneda, M., Majda, A.: Mathematical models with exact renormalization for turbulent transport. Commun. Math. Phys. 131, 381–429 (1990)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Avellaneda, M., Majda, A.J.: An integral representation and bounds on the effective diffusivity in passive advection by laminar and turbulent flows. Commun. Math. Phys. 138, 339–391 (1991)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Avellaneda, M.: Homogenization and renormalization, the mathematics of multi-scale random media and turbulent diffusion. In: Lectures in Applied Mathematics, Volume 31, 1996, pp. 251–268Google Scholar
  6. 6.
    Rabi Bhattacharya: Multiscale diffusion processes with periodic coefficients and an application to solute transport in porous media. The Annals of Appl. Probab. 9(4), 951–1020 (1999)Google Scholar
  7. 7.
    Bensoussan, A., Lions, J. L., Papanicolaou, G.: Asymptotic analysis for periodic structure. Amsterdam, North Holland, 1978Google Scholar
  8. 8.
    Gérard, Ben Arous, Houman, Owhadi: Multi-scale homogenization with bounded ratios and anomalous slow diffusion. Commun. Pure and App. Math. XV, 1–34 (2002)Google Scholar
  9. 9.
    Gérard, Ben Arous, Houman, Owhadi: Super-diffusivity in a shear flow model from perpetual homogenization. Commun. Math. Phys. 227(2), 281–302 (2002)CrossRefGoogle Scholar
  10. 10.
    Childress, S.: Alpha-effect in flux ropes and sheets. Phys. Earth Planet Intern. 20, 172–180 (1979)CrossRefGoogle Scholar
  11. 11.
    Castell, F., Pradeilles, F.: Annealed large deviations for diffusions in a random Gaussian shear flow drift. Stoch. Process. Appl. 94(2), 171–197 (2001)CrossRefGoogle Scholar
  12. 12.
    Dimotakis, P. E., Catrakis, H. J.: Turbulence, fractals, and mixing. Technical report, NATO Advanced Studies Institute series, Mixing: Chaos and Turbulence (7-20 July 1996, Corsica, France), 1997. Available as GALCIT Report FM97-1Google Scholar
  13. 13.
    Fannjiang, A.: Richardson’s laws for relative dispersion in colored-noise flows with kolmogorov-type spectra. ArXiv math-ph/0209007, 2002Google Scholar
  14. 14.
    Furtado, F., Glimm,J., Lindquist, B., Pereira, F., Zhang, Q.: Time dependent anomalous diffusion for flow in multi-fractal porous media. In: T.M.M. Verheggan, (ed.) Proceeding of the workshop on numerical methods for simulation of multiphase and complex flow, New York: Springer Verlag, 1991, pp. 251–259Google Scholar
  15. 15.
    Fannjiang, A., Komorowski, T.: Fractional brownian motion limit for motions in turbulence. Ann. of Appl. Prob. 10(4), (2001)Google Scholar
  16. 16.
    Fannjiang, A., Papanicolaou, G.C.: Convection enhanced diffusion for periodic flows. SIAM J. Appl. Math. 54, 333–408 (1994)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Gaudron, G.: Scaling laws and convergence for the advection-diffusion equation. Ann. of Appl. Prob. 8, 649–663 (1998)CrossRefMathSciNetzbMATHGoogle Scholar
  18. 18.
    Gawedzki, K., Kupiainen, A.: Anomalous scaling of the passive scalar. Phys. Rev. Lett. 75, 3834–3837 (1998)CrossRefGoogle Scholar
  19. 19.
    Glimm, J., Lindquist, B., Pereira, F., Peierls, R.: The multi-fractal hypothesis and anomalous diffusion. Mat. Apl. Comput. 11(2), 189–207 (1992)Google Scholar
  20. 20.
    Glimm, J., Zhang, Q.: Inertial range scaling of laminar shear flow as a model of turbulent transport. Commun. Math. Phys. 146, 217–229 (1992)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Isichenko, M.B., Kalda, J.: Statistical topography. ii. two-dimensional transport of a passive scalar. J. Nonlinear Sci. 1, 375–396 (1991)zbMATHGoogle Scholar
  22. 22.
    Jikov, V. V., Kozlov, S. M., Oleinik, O. A.: Homogenization of Differential Operators and Integral Functionals. Berlin-Heidelberg-New York: Springer-Verlag, 1991Google Scholar
  23. 23.
    Komorowski, T., Olla, S.: On the superdiffusive behavior of passive tracer with a gaussian drift. Journ. Stat. Phys. 108, 647–668 (2002)CrossRefMathSciNetzbMATHGoogle Scholar
  24. 24.
    Kesten, H., Spitzer, F.: A limit theorem related to a new class of self-similar processes. Z. Wahrsch. Verw. Gebiete 50(1), 5–25 (1979)zbMATHGoogle Scholar
  25. 25.
    Landau, L.D., Lifshitz, E.M.: Fluid Mechanics, 2nd ed., Moscow: MIR, 1984Google Scholar
  26. 26.
    Meyers, N. G.: An l p-estimate for the gradient of solutions of second order elliptic divergence equations. Ann. Scula Norm. Sup. Pisa 17, 189–206 (1963)zbMATHGoogle Scholar
  27. 27.
    Majda, A.J., Kramer, P.R.: Simplified models for turbulent diffusion: Theory, numerical modelling, and physical phenomena. Phys. Rep. 314, 237–574 (1999). Available at http://www.elsevier.nl/locate/physrepCrossRefMathSciNetGoogle Scholar
  28. 28.
    Norris, J.R.: Long-time behaviour of heat flow: Global estimates and exact asymptotics. Arch. Rat. Mech. Anal. 140, 161–195 (1997)CrossRefMathSciNetzbMATHGoogle Scholar
  29. 29.
    Owhadi, H.: Anomalous diffusion and homogenization on an infinite number of scales. PhD thesis, EPFL – Swiss Federal Institute of Technology, 2001. Available at http://www.cmi.univ-mrs.fr/∼owhadi/Google Scholar
  30. 30.
    Houman, Owhadi: Anomalous slow diffusion from perpetual homogenization. Submitted, 2001. Preprint available at http://www.cmi.univ-mrs.fr/∼ owhadi/Google Scholar
  31. 31.
    Piterbarg, L.: Short-correlation approximation in models of turbulent diffusion. In: Stochastic models in geosystems (Minneapolis, MN, 1994), Volume 85, of IMA Vol. Math. Appl., New York: Springer, 1997, pp. 313–352Google Scholar
  32. 32.
    Simander, C.G.: On Dirichlet’s boundary value problem. Berlin-Heidelberg-New York: Springer-Verlag, 1972Google Scholar
  33. 33.
    Stampacchia, G.: Le problème de dirichlet pour les équations elliptiques du second ordre à coefficients discontinus. Ann. Inst. Fourier (Grenoble), 15(1), 189–258 (1965)Google Scholar
  34. 34.
    Stampacchia, G.: Equations elliptiques du second ordre à coefficients discontinus. Montréal Canada: Les Presses de l’Université de Montréal, 1966Google Scholar
  35. 35.
    Woyczynski, W. A.: Passive tracer transport in stochastic flows. In: Stochastic Climate Models, Boston Birkhäuser-Boston, 2000, p. 16Google Scholar
  36. 36.
    Zhang, Q.: A multi-scale theory of the anomalous mixing length growth for tracer flow in heterogeneous porous media. J. Stat. Phys. 505, 485–501 (1992)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  1. 1.LATP, UMR CNRS 6632CMI, Université de ProvenceMarseille Cedex 1France

Personalised recommendations