Skip to main content

Advertisement

Log in

A Semi-Classical Trace Formula at a Totally Degenerate Critical Level

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We study the semi-classical trace formula at a critical energy level for an h-pseudo-differential operator on n whose principal symbol has a totally degenerate critical point for that energy. This problem is studied for a large time behavior and under the hypothesis that the principal symbol of the operator has a local extremum at the critical point.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Balian, R., Bloch, C.: Solution of the Schrödinger equation in term of classical path. Ann. Phys. 85, 514–545 (1974)

    MATH  Google Scholar 

  2. Brummelhuis, R., Paul, T., Uribe, A.: Spectral estimate near a critical level. Duke Math. J. 78(3), 477–530 (1995)

    MATH  Google Scholar 

  3. Brummelhuis, R., Uribe, A.: A semi-classical trace formula for Schrödinger operators. Commun. Math. Phys. 136(3), 567–584 (1991)

    MATH  Google Scholar 

  4. Camus, B.: Formule des traces semi-classique au niveau d’une énergie critique. Thèse de l’université de Reims (2001)

  5. Camus, B.: A semi-classical trace formula at a non-degenerate critical level. To appear in J. Funct. Anal.

  6. Charbonnel, A.M., Popov, G.: A semi-classical trace formula for several commuting operators. Commun. Partial Differ. Eq. 24(1–2), 283–323 (1999)

    Google Scholar 

  7. Combescure, M., Ralston, J., Robert, D.: A proof of the Gutzwiller semi-classical trace formula using coherent states decomposition, Commun. Math. Phys. 202(2), 463–480 (1999)

    Article  MATH  Google Scholar 

  8. Duistermaat, J.J.: Oscillatory integrals Lagrange immersions and unfolding of singularities. Commun. Pure and Appl. Math. 27, 207–281 (1974)

    MATH  Google Scholar 

  9. Duistermaat, J.J., Hörmander, L.: Fourier Integral Operators. Acta Math. 128(3–4), 183–269 (1972)

    Google Scholar 

  10. Gutzwiller, M.: Periodic orbits and classical quantization conditions. J. Math. Phys. 12, 343–358 (1971)

    Article  Google Scholar 

  11. Hörmander, L.: The analysis of linear partial operators 1,2,3,4. Berlin-Heidelberg-New York: Springer-Verlag ,1985

  12. Hörmander, L.: Seminar on singularities of solutions of linear partial differential equations. Ann. Math. Studies 91, Princeton, NJ: Princeton University Press, 1979, pp. 3–49

  13. Khuat-Duy, D.: A semi-classical trace formula for Schrödinger operators in the case of a critical level. Thèse de l’université Paris 9 (1996)

  14. Khuat-Duy, D.: A semi-classical trace formula at a critical level. J. Funct. Anal. 146(2), 299–351 (1997)

    Article  MATH  Google Scholar 

  15. Paul, T., Uribe, A.: Sur la formule semi-classique des traces. Comptes Rendus des Scéances de l’Académie des Sciences. Série I. 313(5), 217–222 (1991)

    MATH  Google Scholar 

  16. Petkov, V., Popov, G.: Semi-classical trace formula and clustering of the eigenvalues for Schrödinger operators. Ann. de l’Institut Henri Poincaré. Physique Théorique. 68(1), 17–83 (1998)

    MATH  Google Scholar 

  17. Robert, D.: Autour de l’approximation semi-classique. Progress in Math. 68, Boston: Birkhäuser, 1987

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brice Camus.

Additional information

P. Sarnak

This work was supported by the IHP-Network Analysis and Quantum, reference number HPRN-CT-2002-00277. We thank Raymond Brummelhuis for encouragement and for advice concerning this work. We also thank Bernard Helffer for constructive remarks on this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Camus, B. A Semi-Classical Trace Formula at a Totally Degenerate Critical Level. Commun. Math. Phys. 247, 513–526 (2004). https://doi.org/10.1007/s00220-004-1068-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-004-1068-9

Keywords

Navigation