Skip to main content
Log in

Open-String Vertex Algebras, Tensor Categories and Operads

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We introduce notions of open-string vertex algebra, conformal open-string vertex algebra and variants of these notions. These are “open-string-theoretic”, “noncommutative” generalizations of the notions of vertex algebra and of conformal vertex algebra. Given an open-string vertex algebra, we show that there exists a vertex algebra, which we call the “meromorphic center,” inside the original algebra such that the original algebra yields a module and also an intertwining operator for the meromorphic center. This result gives us a general method for constructing open-string vertex algebras. Besides obvious examples obtained from associative algebras and vertex (super)algebras, we give a nontrivial example constructed from the minimal model of central charge We establish an equivalence between the associative algebras in the braided tensor category of modules for a suitable vertex operator algebra and the grading-restricted conformal open-string vertex algebras containing a vertex operator algebra isomorphic to the given vertex operator algebra. We also give a geometric and operadic formulation of the notion of grading-restricted conformal open-string vertex algebra, we prove two isomorphism theorems, and in particular, we show that such an algebra gives a projective algebra over what we call the “Swiss-cheese partial operad.”

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Belavin, A.A., Polyakov, A.M., Zamolodchikov, A.B.: Infinite conformal symmetries in two-dimensional quantum field theory. Nucl. Phys. B241, 333–380 (1984)

  2. Borcherds, R.E.: Vertex algebras, Kac-Moody algebras, and the Monster. Proc. Natl. Acad. Sci. USA 83, 3068–3071 (1986)

    Google Scholar 

  3. Di Francesco, P., Mathieu, P., Sénéchal, D.: Conformal field theory. Graduate Texts in Contemporary Physics. New York: Springer-Verlag, 1997

  4. Dotsenko, V.S., Fateev, V.A.: Conformal algebra and multipoint correlation functions in 2d statistical models. Nucl. Phys. B240, 312–348 (1984)

  5. Cardy, J.L.: Conformal invariance and surface critical behavior. Nucl. Phys. B240, 514–532 (1984)

  6. Cardy, J.L.: Effect of boundary conditions on the operator content of two-dimensional conformally invariant theories. Nucl. Phys. B275, 200–218 (1986)

  7. Cardy, J.L.: Boundary conditions, fusion rules and the Verlinde formula. Nucl. Phys. B324, 581–596 (1989)

  8. Douglas, M.R.: Dirichlet branes, homological mirror symmetry, and stability. In: Proceedings of the International Congress of Mathematicians, Vol. III (Beijing, 2002), Beijing: Higher Ed. Press, 2002, pp. 395–408

  9. Feingold, A.J., Ries, J.F.X., Weiner, M.D.: Spinor construction of the minimal model. In: Moonshine, the Monster, and related topics. Proc. Joint Summer Research Conference, Mount Holyoke College, South Hadley, 1994, (eds.), C. Dong, G. Mason, Contemp. Math. 193, Providence, RI: Am. Math. Soc., 1996, pp. 45–92

  10. Felder, G., Fröhlich, J., Fuchs, J., Schweigert, C.: Correlation functions and boundary conditions in rational conformal field theory and three-dimensional topology. Compositio Math. 131, 189–237 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. Frenkel, I.B., Huang, Y.-Z., Lepowsky, J.: On axiomatic approaches to vertex operator algebras and modules. Preprint, 1989; Mem. Amer. Math. Soc. 104, (1993)

  12. Frenkel, I.B., Lepowsky, J., Meurman, A.: Vertex operator algebras and the Monster. Pure and Appl. Math. 134, New York: Academic Press, 1988

  13. Fuchs, J., Runkel, I., Schweigert, C.: Conformal correlation functions, Frobenius algebras and triangulations. Nucl. Phys. B624, 452–468 (2002)

  14. Fuchs, J., Runkel, I., Schweigert, C.: TFT construction of RCFT correlators I: Partition functions. To appear; hep-th/0204148

  15. Hu, P., Kriz, I.: Conformal field theory and elliptic cohomology. To appear

  16. Hu, P., Kriz, I.: D-brane cohomology and elliptic cohomology. To appear

  17. Huang, Y.-Z.: On the geometric interpretation of vertex operator algebras. Ph.D thesis, Rutgers University, 1990

  18. Huang, Y.-Z.: Geometric interpretation of vertex operator algebras. Proc. Natl. Acad. Sci. USA 88, 9964–9968 (1991)

    MATH  Google Scholar 

  19. Huang, Y.-Z.: A theory of tensor products for module categories for a vertex operator algebra, IV. J. Pure Appl. Alg. 100, 173–216 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  20. Huang, Y.-Z.: Virasoro vertex operator algebras, (nonmeromorphic) operator product expansion and the tensor product theory. J. Alg. 182, 201–234 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  21. Huang, Y.-Z.: A nonmeromorphic extension of the moonshine module vertex operator algebra. In: Moonshine, the Monster and related topics, Proc. Joint Summer Research Conference, Mount Holyoke, 1994, (eds.), C. Dong, G. Mason, Contemp. Math., Vol. 193, Providence, RI: Am. Math. Soc., 1996, pp. 123–148

  22. Huang, Y.-Z.: Two-dimensional conformal geometry and vertex operator algebras. Progress in Mathematics, Vol. 148, Boston: Birkhäuser, 1997

  23. Huang, Y.-Z.: Generalized rationality and a “Jacobi identity” for intertwining operator algebras. Selecta Math. (N. S.) 6, 225–267 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  24. Huang, Y.-Z.: Differential equations and intertwining operators. Duke Math. J., to appear; math.QA/0206206

  25. Huang, Y.-Z.: Riemann surfaces with boundaries and the theory of vertex operator algebras. To appear; math.QA/0212308

  26. Huang, Y.-Z., Kirillov, A., Jr., Lepowsky, J.: Braided tensor categories and extensions of vertex operator algebras. To appear

  27. Huang, Y.-Z., Lepowsky, J.: Operadic formulation of the notion of vertex operator algebra. In: Mathematical Aspects of Conformal and Topological Field Theories and Quantum Groups, Proc. Joint Summer Research Conference, Mount Holyoke College, South Hadley, 1992, (eds.), P. Sally, M. Flato, J. Lepowsky, N. Reshetikhin, G. Zuckerman, Contemp. Math., Vol. 175, Providence, RI: Am. Math. Soc., 1994, pp. 131–148

  28. Huang, Y.-Z., Lepowsky, J.: Vertex operator algebras and operads. In: The Gelfand Mathematical Seminars, 1990–1992, (eds.), L. Corwin, I. Gelfand, J. Lepowsky, Boston: Birkhäuser, 1993, pp. 145–161

  29. Huang, Y.-Z., Lepowsky, J.: A theory of tensor products for module categories for a vertex operator algebra, I. Selecta Math. (N.S.) 1, 699–756 (1995)

    MathSciNet  MATH  Google Scholar 

  30. Huang, Y.-Z., Lepowsky, J.: A theory of tensor products for module categories for a vertex operator algebra, II. Selecta Math. (N.S.) 1, 757–786 (1995)

    MATH  Google Scholar 

  31. Huang, Y.-Z., Lepowsky, J.: Tensor products of modules for a vertex operator algebra and vertex tensor categories. In: Lie Theory and Geometry, in honor of Bertram Kostant, (eds.), R. Brylinski, J.-L. Brylinski, V. Guillemin, V. Kac, Boston: Birkhäuser, 1994, pp. 349–383

  32. Huang, Y.-Z., Lepowsky, J.: A theory of tensor products for module categories for a vertex operator algebra, III. J. Pure Appl. Alg. 100, 141–171 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  33. Kong, L.: Ph. D. Thesis, Rutgers University, in preparation

  34. Lazaroiu, C.I.: On the structure of open-closed topological field theory in two dimensions. Nucl. Phys. B603, 497–530 (2001)

  35. Moore, G.: Some comments on branes, G-flux, and K-theory. Int. J. Mod. Phys. A16, 936–944 (2001)

  36. Moore, G.: D-branes, RR-Fields and K-Theory, I, II, III, VI. In: Lecture notes for the ITP miniprogram: The duality workshop: a Math/Physics collaboration, June, 2001;http://online.itp.ucsb.edu/online/mp01/moore1

  37. Moore, G.: K-Theory from a physical perspective. To appear; hep-th/0304018

  38. Ostrik, V.: Module categories, weak Hopf algebras and modular invariants. Transform. Groups 8, 177–206 (2003)

    MathSciNet  MATH  Google Scholar 

  39. Segal, G.: The definition of conformal field theory. In: Differential geometrical methods in theoretical physics (Como, 1987), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 250, Dordrecht: Kluwer Acad. Publ., 1988, pp. 165–171

  40. Segal, G.B.: The definition of conformal field theory. Preprint, 1988

  41. Segal, G.B.: Two-dimensional conformal field theories and modular functors. In: Proceedings of the IXth International Congress on Mathematical Physics, Swansea, 1988, Bristol: Hilger, 1989, pp. 22–37

  42. Segal, G.: Topological structures in string theory. R. Soc. Lond. Philos. Trans. A359, 1389–1398 (2001)

  43. Voronov, A.A.: The Swiss-cheese operad. In: Homotopy invariant algebraic structures, in honor of J. Michael Boardman, Proc. of the AMS Special Session on Homotopy Theory, Baltimore, 1998, (eds.), J.-P. Meyer, J. Morava, W. S. Wilson, Contemp. Math., Vol. 239, Providence, RI: Am. Math. Soc., 1999, pp. 365–373

  44. Wang, W.: Rationality of Virasoro vertex operator algebras. Int. Math. Res. Notices (in Duke Math. J.) 7, 197–211 (1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-Zhi Huang.

Additional information

Communicated by M.R. Douglas

Acknowledgement. We would like to thank Jürgen Fuchs and Christoph Schweigert for helpful discussions and comments. We are also grateful to Jim Lepowsky for comments. The research of Y.-Z. H. is supported in part by NSF grant DMS-0070800.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, YZ., Kong, L. Open-String Vertex Algebras, Tensor Categories and Operads. Commun. Math. Phys. 250, 433–471 (2004). https://doi.org/10.1007/s00220-004-1059-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-004-1059-x

Keywords

Navigation