Skip to main content
Log in

A Generalized Hypergeometric Function III. Associated Hilbert Space Transform

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

For generic parameters (a + ,a ,c)∈(0,∞)2×ℝ4, we associate a Hilbert space transform to the ‘‘relativistic’’ hypergeometric function \(R({a_{+},a_{-}},{\bf c};v,\hat{v})\) studied in previous papers. Restricting the couplings c to a certain polytope, we show that the (renormalized) R-function kernel gives rise to an isometry from the even subspace of \(L^2({{\mathbb R}},\hat{w}(\hat{v})d\hat{v})\) to the even subspace of L 2(ℝ,w(v)dv), where \(\hat{w}(\hat{v})\) and w(v) are positive and even weight functions. We prove that the orthogonal complement of the range of this isometry is spanned by N∈ℕ pairwise orthogonal functions. The latter are in essence Askey-Wilson polynomials, arising from the R-function by choosing \(\hat{v}=i\kappa_n\), with \({{\kappa_0,\ldots,\kappa_{{N-1}}}}\) distinct negative numbers. The two commuting analytic difference operators acting on the variable v for which R is a joint eigenfunction, give rise to two commuting self-adjoint Hamiltonians on the even subspace of L 2(ℝ,w(v)dv). We explicitly determine the relation of the time-dependent scattering theory for these dynamics to their joint spectral transform.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dirac, P.A.M.: Principles of quantum mechanics. Oxford: Oxford University Press, 1930

  2. Flügge, S.: Practical quantum mechanics. New York: Springer, 1974

  3. von Neumann, J.: Mathematische Grundlagen der Quantenmechanik. Berlin: Springer, 1932

  4. Titchmarsh, E.C.: Eigenfunction expansions associated with second-order differential equations, Part I. Oxford: Oxford University Press, 1962

  5. Koornwinder, T.H.: Jacobi functions and analysis on noncompact semisimple Lie groups. In: Special functions: Group theoretical aspects and applications, Mathematics and its applications, Askey, R.A., Koornwinder, T.H., Schempp, W., (eds.), Dordrecht: Reidel, 1984, pp. 1–85

  6. Olshanetsky, M.A., Perelomov, A.M.: Quantum integrable systems related to Lie algebras. Phys. Reps. 94, 313–404 (1983)

    Article  Google Scholar 

  7. Ruijsenaars, S.N.M.: Systems of Calogero-Moser type. In: Proceedings of the 1994 Banff summer school Particles and fields, CRM Ser. in Math. Phys., Semenoff, G., Vinet, L., (eds.), New York: Springer, 1999, pp. 251–352

  8. Askey, R., Wilson, J.: Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials. Mem. Am. Math. Soc. 319 (1985)

  9. Gasper, G., Rahman, M.: Basic hypergeometric series. In: Encyclopedia of Mathematics and its Applications. 35, Cambridge: Cambridge Univ. Press, 1990

  10. Noumi, M., Mimachi, K.: Askey-Wilson polynomials as spherical functions on SU q (2). In: Quantum groups, Lect. Notes in Math. Vol. 1510, New York: Springer, 1992, pp. 98–103

  11. Floreanini, R., Vinet, L.: Quantum algebras and q-special functions. Ann. Phys. (NY) 221, 53–70 (1993)

    Article  MATH  Google Scholar 

  12. Koornwinder, T.H.: Askey-Wilson polynomials as zonal spherical functions on the SU(2) quantum group. SIAM J. Math. Anal. 24, 795–813 (1993)

    MATH  Google Scholar 

  13. Koelink, H.T.: Askey-Wilson polynomials and the quantum SU(2) group: Survey and applications. Acta Appl. Math. 44, 295–352 (1996)

    MATH  Google Scholar 

  14. Dijkhuizen, M.S., Noumi, M.: A family of quantum projective spaces and related q-hypergeometric orthogonal polynomials. Trans. Am. Math. Soc. 350, 3269–3296 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  15. Rosengren, H.: A new quantum algebraic interpretation of the Askey-Wilson polynomials. Contemp. Math. 254, 371–394 (2000)

    MATH  Google Scholar 

  16. Noumi, M., Stokman, J.V.: Askey-Wilson polynomials: An affine Hecke algebraic approach. To appear in Proceedings of the 2000 SIAG Laredo summer school Orthogonal polynomials and special functions, Marcellan, F., van~Assche, W., Alvarez-Nodarse, R., (eds), Nova, Science

  17. Suslov, S.K.: Some orthogonal very-well-poised 8φ7-functions. J. Phys. A: Math. Gen. 30, 5877–5885 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  18. Suslov, S.K.: Some orthogonal very-well-poised 8φ7-functions that generalize Askey-Wilson polynomials. The Ramanujan J. 5, 183–218 (2001)

    Article  MATH  Google Scholar 

  19. Koelink, E., Stokman, J.V.: The Askey-Wilson function transform. Int. Math. Res. Notes (22), 1203–1227 (2001)

  20. Ismail, M.E.H., Rahman, M.: The associated Askey-Wilson polynomials. Trans. Am. Math. Soc. 328, 201–237 (1991)

    MathSciNet  MATH  Google Scholar 

  21. Ruijsenaars, S.N.M.: A generalized hypergeometric function satisfying four analytic difference equations of Askey-Wilson type. Commun. Math. Phys. 206, 639–690 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ruijsenaars, S.N.M.: A generalized hypergeometric function II. Asymptotics and D 4 symmetry. To appear in Commun. Math. Phys. - DOI 10.1007/s00220-003-0969-3

  23. Ruijsenaars, S.N.M.: A new class of reflectionless AΔOs and its relation to nonlocal solitons. Regular and Chaotic Dynamics 7, 351–391 (2002)

    Article  MATH  Google Scholar 

  24. Ruijsenaars, S.N.M.: Hilbert space theory for reflectionless relativistic potentials. Publ. RIMS Kyoto Univ. 36, 707–753 (2000)

    MATH  Google Scholar 

  25. Reed, M., Simon, B.: Methods of modern mathematical physics. II. Fourier analysis, self-adjointness. New York: Academic Press, 1975

  26. Reed, M., Simon, B.: Methods of modern mathematical physics. III. Scattering theory. New York: Academic Press, 1979

  27. Ruijsenaars, S.N.M.: First order analytic difference equations and integrable quantum systems. J. Math. Phys. 38, 1069–1146 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  28. Szegö, G.: Orthogonal polynomials. AMS Colloquium Publications Vol. 23, Providence, RI: Am. Math. Soc., 1939

  29. Ruijsenaars, S.N.M.: Sine-Gordon solitons vs. relativistic Calogero-Moser particles. In: Proceedings of the Kiev NATO Advanced Study Institute ‘‘Integrable structures of exactly solvable two-dimensional models of quantum field theory’‘, NATO Science Series Vol. 35, Pakuliak, S., von~Gehlen, G., (eds.), Dordrecht: Kluwer, 2001, pp. 273–292

  30. Stokman, J.V.: Hyperbolic beta integrals. Preprint, math.QA/0303178

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by L. Takhtajan

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruijsenaars, S. A Generalized Hypergeometric Function III. Associated Hilbert Space Transform. Commun. Math. Phys. 243, 413–448 (2003). https://doi.org/10.1007/s00220-003-0970-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-003-0970-x

Keywords

Navigation