Skip to main content
Log in

On the Existence of a Maximizer for the Strichartz Inequality

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

It is shown that a maximizing function u *L 2 does exist for the Strichartz inequality ∥e it x 2 u L 6 t (L 6 x )≤Su L 2, with S>0 being the sharp constant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bourgain, J.: Refinements of Strichartz’ inequality and applications to 2D-NLS with critical nonlinearity. Internat. Math. Res. Notices 5, 253–283 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  2. Carlen, E.A., Loss, M.: Extremals of functionals with competing symmetries. J. Funct. Anal. 88, 437–456 (1990)

    MathSciNet  MATH  Google Scholar 

  3. Cazenave, Th.: An Introduction to Nonlinear Schrödinger Equations. 3rd edition, Instituto de Mathematica – UFJR, Rio de Janeiro, RJ 1996; available at http://www.ann.jussieu.fr/∼ cazenave/List\(\underline{{\hspace {0.5em}}} \)Art\(\underline{{\hspace{0.5em}}}\)Tele.html

  4. Colliander, J.E., Delort, J.-M., Kenig, C.E., Staffilani, G.: Bilinear estimates and applications to 2D NLS. Trans. Am. Math. Soc. 353, 3307–3325 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  5. Evans, L.C.: Weak Convergence Methods for Nonlinear Partial Differential Equations. Providence, RI: American Mathematical Society, 1990

  6. Grünrock, A.: Some local wellposedness results for nonlinear Schrödinger equations below L 2. Preprint arXiv:math.AP/0011157 v2, 2001

  7. Kenig, C.E., Ponce, G., Vega, L.: Quadratic forms for the 1-D semilinear Schrödinger equation. Trans. Am. Math. Soc. 348, 3323–3353 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  8. Kunze, M.: A variational problem with lack of compactness related to the Strichartz inequality. To appear in Calc. Var. Partial Differential Equations

  9. Lieb, E.H.: Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities. Ann. Math. 118, 349–374 (1983)

    MathSciNet  MATH  Google Scholar 

  10. Lions, P.-L.: The concentration compactness principle in the calculus of variations. The locally compact case. Ann. Inst. H. Poincaré Anal. Non Lineairé 1, I.: 109–145 (1984) and II.: 223–283 (1984)

  11. Lions, P.-L.: The concentration compactness principle in the calculus of variations. The limit case, Rev. Mat. Iberoamericana 1, I.:(1), 145–201 (1985) and II.:(2), 45–121 (1985)

  12. Stein, E.M.: Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton: Princeton University Press, 1993

  13. Struwe, M.: Variational Methods. 2nd edition, Berlin-New York: Springer, 1996

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Kunze.

Additional information

Communicated by B. Simon

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kunze, M. On the Existence of a Maximizer for the Strichartz Inequality. Commun. Math. Phys. 243, 137–162 (2003). https://doi.org/10.1007/s00220-003-0959-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-003-0959-5

Keywords

Navigation