Skip to main content
Log in

Non-Perturbative Mass and Charge Renormalization in Relativistic No-Photon Quantum Electrodynamics

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Starting from a formal Hamiltonian as found in the physics literature – omitting photons – we define a renormalized Hamiltonian through charge and mass renormalization. We show that the restriction to the one-electron subspace is well-defined. Our construction is non-perturbative and does not use a cut-off. The Hamiltonian is relevant for the description of the Lamb shift in muonic atoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bethe, H.A.: The electromagnetic shift of energy levels. Phys. Rev., Minneapolis, II. Ser. 72, 339–341 (1947)

    Google Scholar 

  2. Dirac, P.-A.-M.: Théorie du positron. In: Cockcroft, J. Chadwick, F. Joliot, J. Joliot, N. Bohr, G. Gamov, P.A.M. Dirac, W. Heisenberg, (eds.), Structure et propriétés des noyaux atomiques. Rapports et discussions du septieme conseil de physique tenu à Bruxelles du 22 au 29 octobre 1933 sous les auspices de l’institut international de physique Solvay. Publies par la commission administrative de l’institut. Paris: Gauthier-Villars. XXV, 353 S., 1934, pp. 203–212

  3. Dirac, P.A.M.: Discussion of the infinite distribution of electrons in the theory of the positron. Proc. Camb. Philos. Soc. 30, 150–163 (1934)

    MATH  Google Scholar 

  4. Dyson, F.J.: The radiation theories of Tomonaga, Schwinger, and Feynman. Phys. Rev. (2) 75, 486–502 (1949)

    Google Scholar 

  5. Dyson, F.J.: Divergence of perturbation theory in quantum electrodynamics. Phys. Rev. (2) 85, 631–632 (1952)

    Google Scholar 

  6. Evans, W.D., Perry, P., Siedentop, H.: The spectrum of relativistic one-electron atoms according to Bethe and Salpeter. Commun. Math. Phys. 178(3), 733–746 (1996)

    MATH  Google Scholar 

  7. French, J.D., Weisskopf, V.F.: The Electromagnetic Shift of Energy Levels. Phys. Rev. II. Ser. 75, 1240–1248 (1949)

    Article  MATH  Google Scholar 

  8. Furry, W.H., Oppenheimer, J.R.: On the Theory of the Electron and Positive. Phys. Rev. II. Ser. 45, 245–262 (1934)

    Article  MATH  Google Scholar 

  9. Glauber, R., Rarita, W., Schwed, P.: Vacuum polarization effects on energy levels in μ-mesonic atoms. Phys. Rev. 120(2), 609–613 (1960)

    Article  MATH  Google Scholar 

  10. Greiner, W., Müller, B., Rafelski, J.: Quantum Electrodynamics of Strong Fields. Texts and Mongraphs in Physics. Berlin-Heidelberg-New York-Tokyo: Springer-Verlag, 1985

  11. Heisenberg, W.: Bemerkungen zur Diracschen Theorie des Positrons. Z. Phys. 90, 209–231 (1934)

    MATH  Google Scholar 

  12. Helffer, B., Siedentop, H.: Form perturbations of the second quantized Dirac field. Math. Phys. Electron. J. 4(4), 16 (electronic), (1998)

    MATH  Google Scholar 

  13. Jauch, J.M., Rohrlich, F.: The theory of photons and electrons. The relativistic quantum field theory of charged particles with spin one-half. Cambridge, MA: Addison-Wesley Publishing Company, Inc., 1955

  14. Kato, T.: Perturbation Theory for Linear Operators, Volume 132 of Grundlehren der mathematischen Wissenschaften. Berlin: Springer-Verlag, 1966

  15. Klaus, M., Scharf, G.: The regular external field problem in quantum electrodynamics. Helv. Phys. Acta 50(6), 779–802 (1977)

    Google Scholar 

  16. Klaus, M., Scharf, G.: Vacuum polarization in Fock space. Helv. Phys. Acta 50(6), 803–814 (1977)

    Google Scholar 

  17. Kroll, N.M., Lamb jun, W.E.: On the Self-Energy of a Bound Electron. Phys. Rev. II. Ser. 75, 388–398 (1949)

    Article  MATH  Google Scholar 

  18. Lamb, W.E., Retherford., R.C.: Fine structure of the hydrogen atom by a microwave method. Phys. Rev. 72(3), 241–243 (1947)

    Article  Google Scholar 

  19. Milonni, P.W.: The Quantum Vacuum: An Introduction to Quantum Electrodynamics. 1st ed., Boston: Academic Press, Inc., 1994

  20. Pauli, W., Rose, M.E.: Remarks on the Polarization Effects in the Positron Theory. Phys. Rev., II. Ser. 49, 462–465 (1936)

    Google Scholar 

  21. Peterman, A., Yamaguchi., Y.: Corrections to the 3d-2p transitions in μ-mesonic phosphorus and the mass of the muon. Phys. Rev. Lett. 2(8), 359–361 (1959)

    Article  Google Scholar 

  22. Reed, M., Simon, B.: Methods of modern mathematical physics. II. Fourier analysis, self-adjointness. New York: Academic Press [Harcourt Brace Jovanovich Publishers], 1975

  23. Reed, M., Simon, B.: Methods of Modern Mathematical Physics. Volume 4, Analysis of Operators. 1st ed., New York: Academic Press, 1978

  24. Schweber, S.S.: QED and the men who made it: Dyson, Feynman, Schwinger, and Tomonaga. Princeton Series in Physics. Princeton, NJ: Princeton University Press, 1994

  25. Schwinger., J.: Quantum Electrodynamics II. Vacuum Polarization and Self-Energy. Phys. Rev., II. Ser. 75, 651–679 (1949)

    Google Scholar 

  26. Serber, R.: Linear modifications in the Maxwell field equations. Phys. Rev., II. Ser. 48, 49–54 (1935)

    Google Scholar 

  27. Simon, B.: Trace Ideals and their Applications, Volume~35 of London Mathematical Society Lecture Note Series. Cambridge: Cambridge University Press, 1979

  28. Thaller, B.: The Dirac Equation. 1st ed., Texts and Monographs in Physics. Berlin: Springer-Verlag, 1992

  29. Uehling, E.A.: Polarization effects in the positron theory. Phys. Rev., II. Ser. 48, 55–63 (1935)

    Google Scholar 

  30. Weinberg, S.: The quantum theory of fields. Vol. I. Foundations, Corrected reprint of the 1995 original. Cambridge: Cambridge Univ. Press, 1996

  31. Weisskopf, V.: Über die Elektrodynamik des Vakuums auf Grund der Quantentheorie des Elektrons. Math.-Fys. Medd., Danske Vid. Selsk. 16(6), 1–39 (1936)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heinz Siedentop.

Additional information

Communicated by B. Simon

C.H. has been supported by a Marie Curie Fellowship of the European Community program ‘‘Improving Human Research Potential and the Socio-economic Knowledge Base’’ under contract number HPMFCT-2000-00660. Both authors acknowledge partial support through the European Union’s IHP network Analysis & Quantum HPRN-CT-2002-00277

© 2003 The authors. Reproduction of this article for non-commercial purposes by any means is permitted.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hainzl, C., Siedentop, H. Non-Perturbative Mass and Charge Renormalization in Relativistic No-Photon Quantum Electrodynamics. Commun. Math. Phys. 243, 241–260 (2003). https://doi.org/10.1007/s00220-003-0958-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-003-0958-6

Keywords

Navigation